2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等
文档抽取任务Label Studio使用指南

1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等
2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等
3.基于Label studio的训练数据标注指南:文本分类任务
4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取
目录
- 1. 安装
- 2. 文档抽取任务标注
- 2.1 项目创建
- 2.2 数据上传
- 2.3 标签构建
- 2.4 任务标注
- 2.5 数据导出
- 2.6 数据转换
- 2.7 更多配置
1. 安装
以下标注示例用到的环境配置:
- Python 3.8+
- label-studio == 1.7.1
- paddleocr >= 2.6.0.1
在终端(terminal)使用pip安装label-studio:
pip install label-studio==1.7.1
安装完成后,运行以下命令行:
label-studio start
在浏览器打开http://localhost:8080/,输入用户名和密码登录,开始使用label-studio进行标注。
2. 文档抽取任务标注
2.1 项目创建
点击创建(Create)开始创建一个新的项目,填写项目名称、描述,然后选择Object Detection with Bounding Boxes。
- 填写项目名称、描述
- 命名实体识别、关系抽取、事件抽取、实体/评价维度分类任务选择``Object Detection with Bounding Boxes`
- 文档分类任务选择``Image Classification`
- 添加标签(也可跳过后续在Setting/Labeling Interface中添加)
图中展示了Span实体类型标签的构建,其他类型标签的构建可参考2.3标签构建
2.2 数据上传
先从本地或HTTP链接上传图片,然后选择导入本项目。
2.3 标签构建
- Span实体类型标签
- Relation关系类型标签
Relation XML模板:
<Relations><Relation value="单位"/><Relation value="数量"/><Relation value="金额"/></Relations>
- 分类类别标签

2.4 任务标注
-
实体抽取
-
标注示例:

-
该标注示例对应的schema为:
schema = ['开票日期', '名称', '纳税人识别号', '地址、电话', '开户行及账号', '金额', '税额', '价税合计', 'No', '税率']
-
-
关系抽取
-
Step 1. 标注主体(Subject)及客体(Object)
-
Step 2. 关系连线,箭头方向由主体(Subject)指向客体(Object)
-
Step 3. 添加对应关系类型标签
-
Step 4. 完成标注
-
该标注示例对应的schema为:
schema = {'名称及规格': ['金额','单位','数量'] }
-
-
文档分类
-
标注示例
-
该标注示例对应的schema为:
schema = '文档类别[发票,报关单]'
-
2.5 数据导出
勾选已标注图片ID,选择导出的文件类型为JSON,导出数据:
2.6 数据转换
将导出的文件重命名为label_studio.json后,放入./document/data目录下,并将对应的标注图片放入./document/data/images目录下(图片的文件名需与上传到label studio时的命名一致)。通过label_studio.py脚本可转为UIE的数据格式。
- 路径示例
./document/data/
├── images # 图片目录
│ ├── b0.jpg # 原始图片(文件名需与上传到label studio时的命名一致)
│ └── b1.jpg
└── label_studio.json # 从label studio导出的标注文件
- 抽取式任务
python label_studio.py \--label_studio_file ./document/data/label_studio.json \--save_dir ./document/data \--splits 0.8 0.1 0.1\--task_type ext
- 文档分类任务
python label_studio.py \--label_studio_file ./document/data/label_studio.json \--save_dir ./document/data \--splits 0.8 0.1 0.1 \--task_type cls \--prompt_prefix "文档类别" \--options "发票" "报关单"
2.7 更多配置
label_studio_file: 从label studio导出的数据标注文件。save_dir: 训练数据的保存目录,默认存储在data目录下。negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。task_type: 选择任务类型,可选有抽取和分类两种类型的任务。options: 指定分类任务的类别标签,该参数只对分类类型任务有效。默认为[“正向”, “负向”]。prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。默认为"情感倾向"。is_shuffle: 是否对数据集进行随机打散,默认为True。seed: 随机种子,默认为1000.separator: 实体类别/评价维度与分类标签的分隔符,该参数只对实体/评价维度分类任务有效。默认为"##"。schema_lang:选择schema的语言,将会应该训练数据prompt的构造方式,可选有ch和en。默认为ch。ocr_lang:选择OCR的语言,可选有ch和en。默认为ch。layout_analysis:是否使用PPStructure对文档进行布局分析,该参数只对文档类型标注任务有效。默认为False。
备注:
- 默认情况下 label_studio.py 脚本会按照比例将数据划分为 train/dev/test 数据集
- 每次执行 label_studio.py 脚本,将会覆盖已有的同名数据文件
- 在模型训练阶段我们推荐构造一些负例以提升模型效果,在数据转换阶段我们内置了这一功能。可通过
negative_ratio控制自动构造的负样本比例;负样本数量 = negative_ratio * 正样本数量。 - 对于从label_studio导出的文件,默认文件中的每条数据都是经过人工正确标注的。
References
- Label Studio
- 参考链接
相关文章:
2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等
文档抽取任务Label Studio使用指南 1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等 2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等…...
如何在openKylin操作系统上搭建Qt开发环境
一、获取linux系统下的Qt安装包 Qt官网下载地址:https://download.qt.io 国内镜像下载地址:https://mirrors.cloud.tencent.com/qt/ 。建议用镜像下载速度快。集成安装包在 official_releases/qt 目录下,新地址:https://downloa…...
T_SQL和SQL的区别
一. SQL Server和T-SQL的区别(⭐T-SQL 包含了 SQL)SQL Server是结构化查询语言,是目前关系型数据库管理系统中使用最广泛的查询语言T-SQL是标准SQL语言的扩展,是SQL Server的核心,在SQL的的基础上添加了变量,运算符,函数和流程控制等,Microso…...
用Python自己写一个分词器,python实现分词功能,隐马尔科夫模型预测问题之维特比算法(Viterbi Algorithm)的Python实现
☕️ 本文系列文章汇总: (1)HMM开篇:基本概念和几个要素 (2)HMM计算问题:前后向算法 代码实现 (3)HMM学习问题:Baum-Welch算法 代码实现(…...
刷题笔记2 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II ,总结
977.有序数组的平方 给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。 输入:nums [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 […...
python 支付宝营销活动现金红包开发接入流程-含接口调用加签
1 创建网页/移动应用 2 配置接口加签方式 涉及到金额的需要上传证书,在上传页面有教程, 在支付宝开放平台秘钥工具中生成CSR证书,会自动保存应用公钥和私钥到电脑上,调用支付宝接口需要应用私钥进行加签 上传完CSR证书后会有三个…...
Python操作Windows
用python进行windows端UI自动化的库有很多,比如pywinauto等,本文介绍一个使用autoit3来实现的 pyautoit 库pyautoit 是一个用python写的基于AutoItX3.dll的接口库,用来进行windows窗口的一系列操作,也支持鼠标键盘的操作。安装pip…...
Aptos SDK交互笔记(一)
背景 之前我们已经了解TS的一些语法,接下来可以实战训练下,这系列的文章就会介绍如何通过Aptos官网提供的TypeScript SDK与Aptos进行交互,这篇文章主要讲的就是如何使用提供API在aptos区块链上转帐。 官网示例 官网提供了交互的例子&#…...
汽车 12V 和 24V 电池输入保护推荐
简介汽车电池电源线路在运行系统时容易出现瞬变。所需的典型保护包括过压、过载、反极性和跨接启动。在汽车 的生命周期中,交流发电机可能会被更换为非OEM 部件。售后市场上的交流发电机可能具有不同的负载突降(LOAD DUMP)保护或没有负载突降…...
龙蜥LoongArch架构研发全揭秘,龙芯开辟龙腾计划技术合作新范式
编者按:在开源新基建加快建设的背景下,越来越多的企业选择加入龙蜥社区,当前社区生态合作伙伴已突破 300 家。于是,龙蜥社区能为加入的企业提供哪些支持成为越多伙伴们更加关注的话题。本文将以龙蜥社区和龙芯中科联合研发龙蜥 Lo…...
剑指 Offer 16. 数值的整数次方
摘要 剑指 Offer 16. 数值的整数次方 本题的方法被称为快速幂算法,有递归和迭代两个版本。这篇题解会从递归版本的开始讲起,再逐步引出迭代的版本。当指数n为负数时,我们可以计算 x^(-n)再取倒数得到结果,因此我们只需要考虑n为…...
在苹果电脑 mac 上安装原神(playCover)
该方法只能在 M1、M2 mac 上安装原神 目录前言一、首先下载安装 playCover1. playCover 下载2. playCover 安装安装出现问题解决方法二、下载安装原神1.安装包下载2.安装原神三、登录、键盘映射及版本更新等问题登录键盘映射版本更新前言 最近买了新的mac,作者本人…...
数据结构考研习题精选
1 A假设比较t次,由于换或不换,则必然有2^t种可能。又设有n个关键字,n!排列组合,则必然有2^t&…...
linux常用命令介绍 04 篇——uniq命令使用介绍(Linux重复数据的统计处理)
linux常用命令介绍 04 篇——uniq命令使用介绍(Linux重复数据的统计处理)1. uniq 使用语法2. sort 简单效果3. uniq 使用例子3.1 不加任何选项3.1.1 不用 sort 效果3.1.2 uniq 结合 sort 一起使用3.2 使用选项例子3.2.1 去重打印(或打印不重复…...
网站打不开数据库错误等常见问题解决方法
1、“主机开设成功!”上传数据后显示此内容,是因为西部数码默认放置的index.htm内容,需要核实wwwroot目录里面是否有自己的程序文件,可以删除index.htm。 2、恭喜,lanmp安装成功!这个页面是wdcp的默认页面&…...
爬虫实战进阶版【1】——某眼专业版实时票房接口破解
某眼专业版-实时票房接口破解 某眼票房接口:https://piaofang.maoyan.com/dashboard-ajax 前言 当我们想根据某眼的接口获取票房信息的时候,发现它的接口处的参数是加密的,如下图: 红色框框的参数都是动态变化的,且signKey明显是加密的一个参数。对于这种加密的参数,我们需要…...
大话数据结构-普里姆算法(Prim)和克鲁斯卡尔算法(Kruskal)
5 最小生成树 构造连通网的最小代价生成树称为最小生成树,即Minimum Cost Spanning Tree,最小生成树通常是基于无向网/有向网构造的。 找连通网的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法。 5.1 普里姆ÿ…...
UNet-肝脏肿瘤图像语义分割
目录 一. 语义分割 二. 数据集 三. 数据增强 图像数据处理步骤 CT图像增强方法 :windowing方法 直方图均衡化 获取掩膜图像深度 在肿瘤CT图中提取肿瘤 保存肿瘤数据 四. 数据加载 数据批处理 编辑编辑 数据集加载 五. UNet神经网络模型搭建 单张图片…...
三周爆赚千万 电竞选手在无聊猿游戏赢麻了
如何用3个星期赚到1千万?普通人做梦都不敢想的事,电竞职业选手Mongraal却用几把游戏轻易完成,赚钱地点是蓝筹NFT项目Bored Ape Yacht Club(BAYC无聊猿)出品的新游戏Dookey Dash。 这款游戏类似《神庙逃亡》࿰…...
BERT学习
非精读BERT-b站有讲解视频(跟着李沐学AI) (大佬好厉害,讲的比直接看论文容易懂得多) 写在前面 在计算MLM预训练任务的损失函数的时候,参与计算的Tokens有哪些?是全部的15%的词汇还是15%词汇中真…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
