当前位置: 首页 > news >正文

Pinely Round 3 (Div. 1 + Div. 2)(A~D)(有意思的题)

A - Distinct Buttons 

        题意:

思路:模拟从(0,0)到每个位置需要哪些操作,如果总共需要4种操作就输出NO。

// Problem: A. Distinct Buttons
// Contest: Codeforces - Pinely Round 3 (Div. 1 + Div. 2)
// URL: https://codeforces.com/contest/1909/problem/0
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){return b > 0 ? gcd(b , a % b) : a;
}LL lcm(LL a , LL b){return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){for(int i = 0 ; i <= n ; i ++){a[i] = 0;}
}
void solve() 
{cin >> n;int flag[4] = {0 , 0 , 0 , 0};for(int i = 0 ; i < n ; i ++){int x , y;cin >> x >> y;if(x < 0){flag[0] = 1;}else if(x > 0){flag[1] = 1;}if(y < 0){flag[2] = 1;}else if(y > 0){flag[3] = 1;}}	int cnt = 0;for(int i = 0 ; i < 4 ; i ++){cnt += flag[i];}if(cnt <= 3){cout <<"Yes\n";}else{cout <<"NO\n";}
}            
int main() 
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cout.precision(10);int t=1;cin>>t;while(t--){solve();}return 0;
}

B - Make Almost Equal With Mod 

思路:比较有意思的题目,可以发现k取2的倍数即可。证明如下:将所有数变为二进制表示,那么某个数模2的结果即二进制最后一位,模4的结果即二进制倒数第二位...如此类推。

           由于题目必然存在解,也就是说数组不可能全相等。既然不可能全相等,那一定存在整个数组某一位存在1和0。因此k取2的倍数必然能够满足题意。

        

// Problem: B. Make Almost Equal With Mod
// Contest: Codeforces - Pinely Round 3 (Div. 1 + Div. 2)
// URL: https://codeforces.com/contest/1909/problem/B
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
#define int long long
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 1e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){return b > 0 ? gcd(b , a % b) : a;
}LL lcm(LL a , LL b){return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){for(int i = 0 ; i <= n ; i ++){a[i] = 0;}
}
void solve() 
{cin >> n;int cnt1 = 0 , cnt0 = 0;for(int i = 0 ; i < n ; i++){cin >> a[i];}for(int j = 2 ; j <= llinf ; j *= 2){set<int>st;for(int i = 0 ;i < n ; i ++){st.insert(a[i] % j);}if(st.size() == 2){cout << j << endl;return;;}}}            
signed main() 
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cout.precision(10);int t=1;cin>>t;while(t--){solve();}return 0;
}

C - Heavy Intervals 

        题意:

思路:首先想到对l,r,c数组进行排序。可以发现,无论如何排序,所有区间长度之和是不会改变的。因此要让权值之和最小,需要让小的区间尽可能小。即对于任意r_{i}而言,l_{i}为最靠近它的元素。而从小到大的处理r_{i}可以保证不会影响到后面的数。

        

// Problem: C. Heavy Intervals
// Contest: Codeforces - Pinely Round 3 (Div. 1 + Div. 2)
// URL: https://codeforces.com/contest/1909/problem/C
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
#define int long long
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){return b > 0 ? gcd(b , a % b) : a;
}LL lcm(LL a , LL b){return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){for(int i = 0 ; i <= n ; i ++){a[i] = 0;}
}
void solve() 
{cin >> n;int l[n] , r[n] , c[n];for(int i = 0 ; i < n ; i ++)cin >> l[i];for(int i = 0 ; i < n ; i ++)cin >> r[i];for(int i = 0 ; i < n ; i ++)cin >> c[i];sort(c , c + n);sort(l , l + n);sort(r , r + n);int pre[n];stack<int>st;int ll = 0;int ans = 0;for(int i = 0 ; i < n ;i ++){while(ll < n && r[i] > l[ll]){st.push(l[ll]);ll++;}int x = st.top();st.pop();pre[i] = r[i] - x;} 	sort(pre , pre + n);for(int i = 0 ; i < n ; i ++){ans += pre[i] * c[n - i - 1];}cout << ans << endl;
}            
signed main() 
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cout.precision(10);int t=1;cin>>t;while(t--){solve();}return 0;
}

D - Split Plus K 

        题意:

思路:假设最终所有数为ans,对于a_{i}而言,需要操作t次以后能变成ans,需要满足a_{i} + t*k = (t + 1) * ans

        转换一下后得到t = (a_{i} - ans)/(ans-k)

        即ans成立的条件为:\forall i((a_{i} - k)\%(ans - k)) = 0

        为了方便解释,假设所有数都大于k。想要操作数最小,即ans-k需要最大。可以发现,最终的ans-k的最大值为gcd(a_{1} - k , a_{2} - k , a_{3} - k .... a_{n} - k)。求出gcd之后再带回原式子求出操作数t即可。相反所有数都小于k也是一样的操作。需要注意存在数等于k时,需要所有数都等于k,否则输出-1。

        

// Problem: D. Split Plus K
// Contest: Codeforces - Pinely Round 3 (Div. 1 + Div. 2)
// URL: https://codeforces.com/contest/1909/problem/D
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
#define int long long
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){return b > 0 ? gcd(b , a % b) : a;
}LL lcm(LL a , LL b){return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){for(int i = 0 ; i <= n ; i ++){a[i] = 0;}
}
void solve() 
{// x + tk = (t + 1) * ans
// x - ans = t(ans - k)
// ans - k < 0 ??
// (x - ans / ans - k ) = t // ans 越大越好cin >> n >> m;for(int i = 0 ; i < n ; i++)cin >> a[i];sort(a.begin() , a.begin() + n);for(int i = 0 ; i < n ; i ++){if(a[0] < m && a[i] >= m){cout << -1 << endl;return;}}for(int i = 0 ; i < n ; i ++){a[i] -= m;}int ans = 0;for(int i = 0 ; i < n ; i ++){ans = gcd(ans , abs(a[i]));}int out = 0;if(a[0] == 0 && a[n - 1] != 0 || a[0] != 0 && a[n - 1] == 0){cout << -1 << endl;return;}else if(ans == 0){cout << 0 << endl;return;}for(int i = 0 ; i < n ; i ++){if(a[i] >= 0){out += (a[i] - ans) / ans ;}else{out += (a[i] + ans) / -ans;}}cout << out << endl;
}            
signed main() 
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);cout.precision(10);int t=1;cin>>t;while(t--){solve();}return 0;
}

       

        

相关文章:

Pinely Round 3 (Div. 1 + Div. 2)(A~D)(有意思的题)

A - Distinct Buttons 题意&#xff1a; 思路&#xff1a;模拟从&#xff08;0,0&#xff09;到每个位置需要哪些操作&#xff0c;如果总共需要4种操作就输出NO。 // Problem: A. Distinct Buttons // Contest: Codeforces - Pinely Round 3 (Div. 1 Div. 2) // URL: https…...

在Linux下探索MinIO存储服务如何远程上传文件

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;网络奇遇记、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 创建Buckets和Access Keys二. Linux 安装Cpolar三. 创建连接MinIO服务公网地…...

持续集成交付CICD:Linux 部署 Jira 9.12.1

目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave &#xff08;从节点&#xff09; jira9.12.1…...

Linux命令-查看内存、GC情况及jmap 用法

查看进程占用内存、CPU使用情况 1、查看进程 #jps 查看所有java进程 #top 查看cpu占用高进程 输入m &#xff1a;根据内存排序 topMem: 16333644k total, 9472968k used, 6860676k free, 165616k buffers Swap: 0k total, 0k used, 0k free, 6…...

nginx安装letsencrypt证书

1.安装推荐安装letsencrypt证书的客户端工具 官方推荐通过cerbot客户端安装letsencrypt 官方推荐使用snap客户端安装cerbot客户端 apt install snapd snap install --classic certbot 建立certbot软链接&#xff1a;ln -s /snap/bin/certbot /usr/bin/certbot 2.开始安装letse…...

docker笔记1-安装与基础命令

docker的用途&#xff1a; 可以把应用程序代码及运行依赖环境打包成镜像&#xff0c;作为交付介质&#xff0c;在各种环境部署。可以将镜像&#xff08;image&#xff09;启动成容器&#xff08;container&#xff09;&#xff0c;并提供多容器的生命周期进行管理&#xff08;…...

VSCode软件与SCL编程

原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC&#xff0c;是Visual studio code的缩写&#xff0c;是由微软开发的跨平台的轻量级编辑器&#xff0c;支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等&#xff0c…...

Opencv中的滤波器

一副图像通过滤波器得到另一张图像&#xff0c;其中滤波器又称为卷积核&#xff0c;滤波的过程称之为卷积。 这就是一个卷积的过程&#xff0c;通过一个卷积核得到另一张图片&#xff0c;明显发现新的到的图片边缘部分更加清晰了&#xff08;锐化&#xff09;。 上图就是一个卷…...

<JavaEE> 基于 TCP 的 Socket 通信模型

目录 一、认识相关API 1&#xff09;ServerSocket 2&#xff09;Socket 二、TCP字节流套接字通信模型概述 三、回显客户端-服务器 1&#xff09;服务器代码 2&#xff09;客户端代码 一、认识相关API 1&#xff09;ServerSocket ServerSocket 常用构造方法ServerSocke…...

[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)

题解 题目本身不难想 首先注意到所有查询的序列长度都是小于logn级别的 我们可以枚举序列长度len&#xff0c;然后用类似滑动窗口的方法&#xff0c;一次性预处理出每种字串的所有出现位置&#xff0c;也就是开N个set去维护所有的位置。预处理会进行O(logn)轮&#xff0c;每…...

机器学习算法(11)——集成技术(Boosting——梯度提升)

一、说明 在在这篇文章中&#xff0c;我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升&#xff0c;在我们深入研究梯度提升之前&#xf…...

使用GBASE南大通用负载均衡连接池

若要使用负载均衡连接池功能&#xff0c;需要在连接串中配置相关的关键字。有关更详细的关键字信息在 GBASE南大通用 连接参数表‛中介绍。假设存在如下场景&#xff1a;  现有集群中存在 4 个节点&#xff1a; 192.168.9.173, 192.168.9.174, 192.168.9.175, 192.168.9.17…...

Flink 数据序列化

为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火&#xff0c;大多数技术组件都是运行在JVM上的&#xff0c;Flink也是运行在JVM上&#xff0c;基于JVM的数据分析引擎都需要将大量的数据存储在内存中&#xff0c;这就不得不面临JVM的一些问题&#xff0c;比如Ja…...

【并发设计模式】聊聊两阶段终止模式如何优雅终止线程

在软件设计中&#xff0c;抽象出了23种设计模式&#xff0c;用以解决对象的创建、组合、使用三种场景。在并发编程中&#xff0c;针对线程的操作&#xff0c;也抽象出对应的并发设计模式。 两阶段终止模式- 优雅停止线程避免共享的设计模式- 只读、Copy-on-write、Thread-Spec…...

Java实现非对称加密【详解】

Java实现非对称加密 1. 简介2. 非对称加密算法--DH&#xff08;密钥交换&#xff09;3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例2 1. 简介 公开密钥密码学&#xff08;英语&#xff1a;Public-key cryptography&#xff09;也称非对称式密…...

simulinkveristandlabview联合仿真——模型导入搭建人机界面

目录 1.软件版本 2.搭建simulink仿真模型 编译错误 3.导入veristand并建立工程 4.veristand导入labview labview显示veristand工程数据 labview设置veristand工程数据 运行labview工程 1.软件版本 matlab2020a&#xff0c;veristand2020 R4&#xff0c;labview2020 SP…...

k8s中Helm工具实践

k8s中Helm工具实践 1&#xff09;安装redis-cluster 先搭建一个NFS的SC&#xff08;只需要SC&#xff0c;不需要pvc&#xff09;&#xff0c;具体步骤此文档不再提供&#xff0c;请参考前面相关章节。 下载redis-cluster的chart包 helm pull bitnami/redis-cluster --untar…...

推荐算法架构7:特征工程(吊打面试官,史上最全!)

系列文章&#xff0c;请多关注 推荐算法架构1&#xff1a;召回 推荐算法架构2&#xff1a;粗排 推荐算法架构3&#xff1a;精排 推荐算法架构4&#xff1a;重排 推荐算法架构5&#xff1a;全链路专项优化 推荐算法架构6&#xff1a;数据样本 推荐算法架构7&#xff1a;特…...

Web前端 ---- 【Vue】vue路由守卫(全局前置路由守卫、全局后置路由守卫、局部路由path守卫、局部路由component守卫)

目录 前言 全局前置路由守卫 全局后置路由守卫 局部路由守卫之path守卫 局部路由守卫之component守卫 前言 本文介绍Vue2最后的知识点&#xff0c;关于vue的路由守卫。也就是鉴权&#xff0c;不是所有的组件任何人都可以访问到的&#xff0c;需要权限&#xff0c;而根据权限…...

uniapp点击tabbar之前做判断

在UniApp中&#xff0c;可以通过监听 tabBar 的 click 事件来在点击 tabBar 前做判断。具体步骤如下&#xff1a; 在 pages.json 文件中配置 tabBar&#xff0c;例如&#xff1a; {"pages":[{"path":"pages/home/home","name":"h…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...