当前位置: 首页 > news >正文

高级人工智能之群体智能:蚁群算法

群体智能

鸟群:

鱼群:

1.基本介绍

蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题,如旅行商问题(TSP)。

蚁群算法的基本步骤

初始化:设置蚂蚁数量、信息素重要程度、启发因子重要程度、信息素的挥发速率和信息素的初始量。

构建解:每只蚂蚁根据概率选择下一个城市,直到完成一次完整的路径。

更新信息素:在每条路径上更新信息素,通常新的信息素量与路径的质量成正比。

迭代:重复构建解和更新信息素的步骤,直到达到预设的迭代次数。

2.公式化蚁群算法

  1. 转移概率 P i j k P_{ij}^k Pijk 表示蚂蚁 k k k从城市 i i i转移到城市 j j j的概率。它是基于信息素强度 τ i j \tau_{ij} τij(信息素重要程度为 α \alpha α和启发式信息 η i j \eta_{ij} ηij)(启发式信息重要程度为 β \beta β )计算的:

    P i j k = [ τ i j ] α ⋅ [ η i j ] β ∑ l ∈ allowed k [ τ i l ] α ⋅ [ η i l ] β P_{ij}^k = \frac{[\tau_{ij}]^\alpha \cdot [\eta_{ij}]^\beta}{\sum_{l \in \text{allowed}_k} [\tau_{il}]^\alpha \cdot [\eta_{il}]^\beta} Pijk=lallowedk[τil]α[ηil]β[τij]α[ηij]β

    其中, allowed k \text{allowed}_k allowedk 是蚂蚁 k k k 可以选择的下一个城市集合。

  2. 信息素更新规则。在每次迭代结束后,所有路径上的信息素会更新。更新规则通常包括信息素的挥发和信息素的沉积:

    τ i j ← ( 1 − ρ ) ⋅ τ i j + Δ τ i j \tau_{ij} \leftarrow (1 - \rho) \cdot \tau_{ij} + \Delta \tau_{ij} τij(1ρ)τij+Δτij

    其中,( ρ \rho ρ ) 是信息素的挥发率,( Δ τ i j \Delta \tau_{ij} Δτij ) 是本次迭代中所有蚂蚁在路径 ( i , j ) (i, j) (i,j) 上留下的信息素总量,通常计算方式为_

    Δ τ i j = ∑ k = 1 m Δ τ i j k \Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^k Δτij=k=1mΔτijk

    而对于每只蚂蚁 k k k ,在路径 ( i , j ) (i, j) (i,j) 上留下的信息素量 Δ τ i j k \Delta \tau_{ij}^k Δτijk 通常与其走过的路径长度成反比:

    Δ τ i j k = { Q L k , if ant  k travels on edge  ( i , j ) 0 , otherwise \Delta \tau_{ij}^k= \begin{cases} \frac{Q}{L_k}, & \text{if ant } k \text{ travels on edge } (i, j) \\ 0, & \text{otherwise} \end{cases} Δτijk={LkQ,0,if ant k travels on edge (i,j)otherwise

    这里, Q Q Q是一个常数, L k L_k Lk是蚂蚁 k k k的路径长度。

  3. 启发式信息 ( η i j \eta_{ij} ηij ) 通常是目标函数的倒数,例如在TSP问题中,它可以是两城市间距离的倒数:

    η i j = 1 d i j \eta_{ij} = \frac{1}{d_{ij}} ηij=dij1

    其中, d i j d_{ij} dij 是城市 i i i j j j 之间的距离。

这些公式构成了蚁群算法的数学基础。通过调整参数 α \alpha α , β \beta β, 和 ρ \rho ρ,可以控制算法的搜索行为,从而适应不同的优化问题。

3.代码实现

import numpy as np
import matplotlib.pyplot as pltclass AntColonyOptimizer:def __init__(self, distances, n_ants, n_best, n_iterations, decay, alpha=1, beta=1):# 初始化参数self.distances = distances  # 城市间的距离矩阵self.pheromone = np.ones(self.distances.shape) / len(distances)  # 初始化信息素矩阵self.all_inds = range(len(distances))  # 所有城市的索引self.n_ants = n_ants  # 蚂蚁数量self.n_best = n_best  # 每轮保留的最佳路径数self.n_iterations = n_iterations  # 迭代次数self.decay = decay  # 信息素的挥发率self.alpha = alpha  # 信息素重要程度self.beta = beta  # 启发因子的重要程度def run(self):# 运行算法shortest_path = Noneshortest_path_length = float('inf')for iteration in range(self.n_iterations):  # 对每次迭代all_paths = self.gen_all_paths()  # 生成所有蚂蚁的路径self.spread_pheromone(all_paths, self.n_best, shortest_path_length)  # 更新信息素shortest_path, shortest_path_length = self.find_shortest_path(all_paths)  # 找到最短路径self.plot_paths(shortest_path, iteration, shortest_path_length)  # 绘制路径return shortest_path, shortest_path_lengthdef gen_path_dist(self, path):# 计算路径长度total_dist = 0for i in range(len(path) - 1):total_dist += self.distances[path[i], path[i+1]]return total_distdef gen_all_paths(self):# 生成所有蚂蚁的路径all_paths = []for _ in range(self.n_ants):path = [np.random.randint(len(self.distances))]  # 选择一个随机起点while len(path) < len(self.distances):move_probs = self.gen_move_probs(path)  # 生成移动概率next_city = np_choice(self.all_inds, 1, p=move_probs)[0]  # 选择下一个城市path.append(next_city)all_paths.append((path, self.gen_path_dist(path)))  # 添加路径和长度return all_pathsdef spread_pheromone(self, all_paths, n_best, shortest_path_length):# 更新信息素sorted_paths = sorted(all_paths, key=lambda x: x[1])  # 按路径长度排序for path, dist in sorted_paths[:n_best]:  # 只取最好的n_best条路径for i in range(len(path) - 1):self.pheromone[path[i], path[i+1]] += 1.0 / self.distances[path[i], path[i+1]]def find_shortest_path(self, all_paths):# 寻找最短路径shortest_path = min(all_paths, key=lambda x: x[1])  # 根据路径长度找到最短的那条return shortest_path[0], shortest_path[1]def gen_move_probs(self, path):# 生成移动概率last_city = path[-1]probs = np.zeros(len(self.distances))for i in self.all_inds:if i not in path:pheromone = self.pheromone[last_city, i] ** self.alphaheuristic = (1.0 / self.distances[last_city, i]) ** self.betaprobs[i] = pheromone * heuristicreturn probs / probs.sum()def plot_paths(self, best_path, iteration, path_length):# 绘制路径plt.figure(figsize=(10, 6))for i in range(len(coords)):  # 绘制所有可能的路径for j in range(i+1, len(coords)):plt.plot([coords[i][0], coords[j][0]], [coords[i][1], coords[j][1]], 'k:', alpha=0.5)for i in range(len(best_path) - 1):  # 绘制最短路径start_city = best_path[i]end_city = best_path[i+1]plt.plot([coords[start_city][0], coords[end_city][0]], [coords[start_city][1], coords[end_city][1]], 'b-', linewidth=2)plt.scatter(*zip(*coords), color='red')  # 标记城市位置for i, coord in enumerate(coords):  # 添加城市标签plt.text(coord[0], coord[1], str(i), color='green')plt.title(f'Iteration: {iteration}, Shortest Path Length: {round(path_length, 2)}')plt.xlabel('X Coordinate')plt.ylabel('Y Coordinate')plt.show()def np_choice(a, size, replace=True, p=None):# numpy的随机选择函数return np.array(np.random.choice(a, size=size, replace=replace, p=p))# 城市坐标
coords = np.random.rand(10, 2)  # 假设有10个城市# 计算距离矩阵
distances = np.zeros((10, 10))
for i in range(10):for j in range(10):distances[i, j] = np.linalg.norm(coords[i] - coords[j])  # 使用欧几里得距离# 运行蚁群算法
aco = AntColonyOptimizer(distances, n_ants=10, n_best=5, n_iterations=100, decay=0.5, alpha=1, beta=2)
path, dist = aco.run()

执行结果:


. . . . . . ...... ......

相关文章:

高级人工智能之群体智能:蚁群算法

群体智能 鸟群&#xff1a; 鱼群&#xff1a; 1.基本介绍 蚁群算法&#xff08;Ant Colony Optimization, ACO&#xff09;是一种模拟自然界蚂蚁觅食行为的优化算法。它通常用于解决路径优化问题&#xff0c;如旅行商问题&#xff08;TSP&#xff09;。 蚁群算法的基本步骤…...

【SpringBoot应用篇】【AOP+注解】SpringBoot+SpEL表达式基于注解实现权限控制

【SpringBoot应用篇】【AOP注解】SpringBootSpEL表达式基于注解实现权限控制 Spring SpEL基本表达式类相关表达式表达式模板 SpEL表达式实现权限控制PreAuthAuthFunPreAuthAspectUserControllerSpelParserUtils Spring SpEL Spring 表达式语言 SpEL 是一种非常强大的表达式语言…...

Java研学-HTTP 协议

一 概述 1 概念和作用 概念&#xff1a;HTTP 是 HyperText Transfer Protocol (超文本传输协议)的简写&#xff0c;它是 TCP/IP 协议之上的一个应用层协议。简单理解就是 HTTP 协议底层是对 TCP/IP 协议的封装。   作用&#xff1a;用于规定浏览器和服务器之间数据传输的格式…...

差生文具多之(二): perf

栈回溯和符号解析是使用 perf 的两大阻力&#xff0c;本文以应用程序 fio 的观测为例子&#xff0c;提供一些处理它们的经验法则&#xff0c;希望帮助大家无痛使用 perf。 前言 系统级性能优化通常包括两个阶段&#xff1a;性能剖析和代码优化&#xff1a; 性能剖析的目标是寻…...

【SPI和API有什么区别】

✅什么是SPI&#xff0c;和API有什么区别 ✅典型解析&#x1f7e2;拓展知识仓&#x1f7e2;如何定义一个SPI&#x1f7e2;SPI的实现原理 ✅SPI的应用场景SpringDubbo ✅典型解析 Java 中区分 API和 SPI&#xff0c;通俗的进: API和 SPI 都是相对的概念&#xff0c;他们的差别只…...

Day67力扣打卡

打卡记录 美丽塔 II&#xff08;前缀和 单调栈&#xff09; 链接 class Solution:def maximumSumOfHeights(self, maxHeights: List[int]) -> int:n len(maxHeights)stack collections.deque()pre, suf [0] * n, [0] * nfor i in range(n):while stack and maxHeights…...

什么是网站监控?

网站监控是跟踪网站的可用性和性能&#xff0c;以最小化宕机时间&#xff0c;优化性能并确保顺畅的用户体验。维护网站正常运行对于任何企业来说都是至关重要的&#xff0c;因而对大多数业务来说&#xff0c;网站应用监控都是一个严峻的挑战。Applications Manager网站应用监控…...

游戏软件提示d3dcompiler_43.dll的五个解决方法,亲测靠谱

在使用电脑进行工作&#xff0c;玩游戏的时候&#xff0c;我们常常会遇到一些错误提示&#xff0c;其中之一就是“D3DCompiler_43.dll丢失”的提示。D3DCompiler_43.dll是一个非常重要的动态链接库文件。它是由DirectX SDK提供的&#xff0c;用于编译和优化DirectX着色器代码的…...

python使用opencv提取视频中的每一帧、最后一帧,并存储成图片

提取视频每一帧存储图片 最近在搞视频检测问题&#xff0c;在用到将视频分帧保存为图片时&#xff0c;图片可以保存&#xff0c;但是会出现(-215:Assertion failed) !_img.empty() in function cv::imwrite问题而不能正常运行&#xff0c;在检查代码、检查路径等措施均无果后&…...

说说对React refs 的理解?应用场景?

先了解&#xff0c;是什么&#xff1f; React 中的 Refs提供了一种方式&#xff0c;允许我们访问 DOM节点或在 render方法中创建的 React元素。 本质为ReactDOM.render()返回的组件实例&#xff0c;如果是渲染组件则返回的是组件实例&#xff0c;如果渲染dom则返回的是具体的do…...

Pytorch 读取t7文件

Pytorch 1.0以上可以使用&#xff1a; import torchfileth_path r"./path/xx.t7" data torchfile.load(th_path)print(data.shape)若data的尺寸为0&#xff0c;则将torch版本降为0.4.1&#xff0c;并使用以下函数&#xff1a; from torch.utils.serialization im…...

【YOLOV8预测篇】使用Ultralytics YOLO进行检测、分割、姿态估计和分类实践

目录 一 安装Ultralytics 二 使用预训练的YOLOv8n检测模型 三 使用预训练的YOLOv8n-seg分割模型 四 使用预训练的YOLOv8n-pose姿态模型 五 使用预训练的YOLOv8n-cls分类模型 <...

[Linux] MySQL数据库之索引

一、索引的相关知识 1.1 索引的简介 索引是一个排序列表&#xff0c;包含索引值和包含该值的数据行的物理地址&#xff08;类似于 c 语言链表&#xff0c;通过指针指向数据记录的内存地址&#xff09;。 使用索引后可以不用扫描全表来定位某行的数据&#xff0c;而是先通过索…...

【期末考试】计算机网络、网络及其计算 考试重点

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 计算机网络及其计算 期末考点 &#x1f680;数…...

力扣labuladong——一刷day79

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣785. 判断二分图二、力扣886. 可能的二分法 前言 给你一幅「图」&#xff0c;请你用两种颜色将图中的所有顶点着色&#xff0c;且使得任意一条边的两个…...

【数据结构入门精讲 | 第十篇】考研408排序算法专项练习(二)

在上文中我们进行了排序算法的判断题、选择题的专项练习&#xff0c;在这一篇中我们将进行排序算法中编程题的练习。 目录 编程题R7-1 字符串的冒泡排序R7-1 抢红包R7-1 PAT排名汇总R7-2 统计工龄R7-1 插入排序还是堆排序R7-2 龙龙送外卖R7-3 家谱处理 编程题 R7-1 字符串的冒…...

【ES实战】Elasticsearch6开始的CCR

【ES实战】学习使用Elasticsearch6开始的CCR 本文涉及官网文章地址 OverviewRequirements for leader indicesAutomatically following indicesGetting started with cross-cluster replicationUpgrading clusters CCR > Cross-cluster replication 文章目录 【ES实战】学…...

Deployment Pay

axure watermark...

MySQL创建member表失败

最近在做一个项目&#xff0c;在台式机上可以跑通&#xff0c;也测试了各个已完成的接口&#xff0c;提交到了GitHub后想着用宿舍的电脑跑一下&#xff0c;在测试member表相关接口时就出错了。报了SQL语法错误&#xff0c;但SQL语句很简单&#xff0c;就根据手机号查询不至于出…...

使用minio实现大文件断点续传

部署 minio 拉取镜像 docker pull minio/minio docker images新建映射目录 新建下面图片里的俩个目录 data(存放对象-实际的数据) config 存放配置开放对应端口 我使用的是腾讯服务器所以 在腾讯的安全页面开启 9000&#xff0c;9090 两个端口就可以了&#xff08;根据大家实际…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...