当前位置: 首页 > news >正文

【算法】【动规】回文串系列问题

文章目录

    • 跳转汇总链接
    • 3.1 回文子串
    • 3.2 最长回文子串
    • 3.3 分割回文串 IV
    • 3.4 分割回文串II(hard)


跳转汇总链接

👉🔗动态规划算法汇总链接


3.1 回文子串

🔗题目链接

给定一个字符串 s ,请计算这个字符串中有多少个回文子字符串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

  1. 状态表示
    • dp[i][j] 表示字符串 s 中以 i 位置开头 j 位置结尾的子串,是否是回文。
  2. 状态转移方程
    • 分析 dp 表,要判断 [i, j] 位置的子串是否为回文,首先要根据 s[i] 和 s[j] 的大小判定,具体如下:

      s[i] != s[j], false
      s[i] == s[j], i == j, truei + 1 == j, truej - i > 1, s[i+1][j-1] == true, trues[i+1][j-1] == false, false
      
  3. 初始化
    • 这里主要是[i+1][j-1] 可能会超出需要范围,但是有个隐含条件 i <= j,可以在 for 循环中控制,所以不需要初始化。
  4. 填表顺序
    • 填写 dp[i][j],需要有 [i+1] 和 [j-1],故二维数组从下往上填写。
  5. 返回值
    • dp 中的 true 的出现次数。

🐎代码如下:

class Solution {
public:int countSubstrings(string s) {int n = s.size();vector<vector<bool>> dp(n, vector<bool>(n));int ret = 0;for(int i = n - 1; i >= 0; i--){for(int j = i; j < n; j++){// 默认都是 false,只需要处理 true 的位置if(s[i] == s[j])dp[i][j] = i + 1 < j ? dp[i+1][j-1] : true;if(dp[i][j])ret++;}}return ret;}
};

3.2 最长回文子串

🔗题目链接

给你一个字符串 s,找到 s 中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

如上题分析,写 dp 方程。

在 dp[i][j] 且满足基本约束时,找到 len(即 j - i + 1)的最大值,
同时,由于 dp 表是从下往上(从后往前)填的,正好更新 begin。

🐎代码如下:

class Solution {
public:string longestPalindrome(string s) {int n = s.size();int len = 1, begin = 0;vector<vector<bool>> dp(n, vector<bool>(n));for(int i = n - 1; i >= 0; i--){for(int j = i; j < n; j++){if(s[i] == s[j])dp[i][j] = i+1 < j ? dp[i+1][j-1] : true;if(dp[i][j] && j-i+1 > len)len = j - i + 1, begin = i;}}return s.substr(begin, len);}
};

3.3 分割回文串 IV

🔗题目链接

给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。
当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串 。

还是照上述方法,生成 dp 表,记录是否为回文子串,进行数据预处理;

再将字符分成三部分,依次遍历,如果 相应位置的 dp 值为 true,就可以直接返回啦。

🐎代码如下:

class Solution {
public:bool checkPartitioning(string s) {int n = s.size();// 1. 预处理:子串是否是回文vector<vector<bool>> dp(n, vector<bool>(n));for(int i = n - 1; i >= 0; i--)for(int j = i; j < n; j++)if(s[i] == s[j])dp[i][j] = i+1 < j ? dp[i+1][j-1] : true;// 2. 字符串分成三段,枚举就好了// [0, i) [i, j) [j, n)for(int i = 1; i < n - 1; i++)  // i 是第二段的起始for(int j = i + 1; j < n; j++)  // j 是第三段的起始if(dp[0][i-1] && dp[i][j-1] && dp[j][n-1])return true;return false;}
};

3.4 分割回文串II(hard)

🔗题目链接

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。
返回符合要求的 最少分割次数 。

同样先预处理数据,方便判断子串是否是回文串;

剩下的分析方法与 1.4 单词拆分题 一样:

  • dp[i] 表示 s[0, i] 位置上的最长字串的最小分割次数;
  • 当分析 dp[i] 的时候,需要将[0, i] 分成两部分:
    • 首先是离 i 最近的 [j, i],找到能满足是回文的 j,

    • 再找 [0, j-1] 的最小分割次数,正是和状态表示一样,于是有

      dp[i], [0, i] 是回文,0[0, i] 不是回文,有 0 < j <= i,[j, i] 是回文,求 min(dp[j]+1)[j, i] 不是回文,不考虑
      

🐎代码如下:

class Solution {
public:int minCut(string s) {int n = s.size();// 1. 预处理:子串是否是回文vector<vector<bool>> sub(n, vector<bool>(n));for(int i = n - 1; i >= 0; i--)for(int j = i; j < n; j++)if(s[i] == s[j])sub[i][j] = i+1 < j ? sub[i+1][j-1] : true;// 2. 分割,是另一个dp问题咯~vector<int> dp(n, 0x3f3f3f3f);for(int i = 0; i < n; i++){if(sub[0][i]) dp[i] = 0;elsefor(int j = 1; j <= i; j++)if(sub[j][i])dp[i] = min(dp[j - 1] + 1, dp[i]);}return dp[n-1];}
};

🥰如果本文对你有些帮助,欢迎👉 点赞 收藏 关注,你的支持是对作者大大莫大的鼓励!!(✿◡‿◡) 若有差错恳请留言指正~~


相关文章:

【算法】【动规】回文串系列问题

文章目录 跳转汇总链接3.1 回文子串3.2 最长回文子串3.3 分割回文串 IV3.4 分割回文串II(hard) 跳转汇总链接 &#x1f449;&#x1f517;动态规划算法汇总链接 3.1 回文子串 &#x1f517;题目链接 给定一个字符串 s &#xff0c;请计算这个字符串中有多少个回文子字符串。 …...

4-Docker命令之docker logs

1.docker logs介绍 docker logs命令是用来获取docker容器的日志 2.docker logs用法 docker logs [参数] CONTAINER [root@centos79 ~]# docker logs --helpUsage: docker logs [OPTIONS] CONTAINERFetch the logs of a containerAliases:docker container logs, docker lo…...

svelte基础语法学习

官网文档地址&#xff1a;绑定 / Each 块绑定 • Svelte 教程 | Svelte 中文网 1、样式 一般情况下父子组件内样式隔离、同级组件间样式隔离 2、页面布局 <style>P{color: red;} </stye><script> // 类似data let name ‘jiang’ let countVal 0 let s…...

Node.js教程-mysql模块

概述 在Node.js中&#xff0c;mysql模块是实现MySQL协议的JavaScript客户端工具。Node.js程序通过与MySQL建立链接&#xff0c;然后可对数据进行增、删、改、查等操作。 安装 由于mysql模块不是Node.js内置模块&#xff0c;需手动安装 npm i mysql注意&#xff1a;若MySQL服…...

网络通信协议

WebSocket通信 WebSocket是一种基于TCP的网络通信协议&#xff0c;提供了浏览器和服务器之间的全双工通信&#xff08;full-duplex&#xff09;能力。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直接可以创建持久性的连接&#xff…...

Spark集群部署与架构

在大数据时代&#xff0c;处理海量数据需要分布式计算框架。Apache Spark作为一种强大的大数据处理工具&#xff0c;可以在集群中高效运行&#xff0c;处理数十TB甚至PB级别的数据。本文将介绍如何构建和管理Spark集群&#xff0c;以满足大规模数据处理的需求。 Spark集群架构…...

DshanMCU-R128s2 SDK 架构与目录结构

R128 S2 是全志提供的一款 M33(ARM)C906(RISCV-64)HIFI5(Xtensa) 三核异构 SoC&#xff0c;同时芯片内部 SIP 有 1M SRAM、8M LSPSRAM、8M HSPSRAM 以及 16M NORFLASH。 本文档作为 R128 FreeRTOS SDK 开发指南&#xff0c;旨在帮助软件开发工程师、技术支持工程师快速上手&am…...

【5G PHY】NR参考信号功率和小区总传输功率的计算

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…...

k8s学习 — 各知识点快捷入口

k8s学习 — 各知识点快捷入口 k8s学习 — 第一章 核心概念 k8s学习 — 第一章 核心概念 命名空间 实践&#xff1a; k8s学习 — &#xff08;实践&#xff09;第二章 搭建k8s集群k8s学习 — &#xff08;实践&#xff09;第三章 深入Podk8s学习 — &#xff08;实践&#xff0…...

【Python】Python 批量转换PDF到Excel

PDF是面向展示和打印使用的&#xff0c;并未考虑编辑使用&#xff0c;所以缺少了很多编辑属性且非常难修改PDF里面的数据。当您需要分析或修改PDF文档数据时&#xff0c;可以将PDF保存为Excel工作簿&#xff0c;实现轻松编辑数据的需求。PDF转Excel&#xff0c;技术关键就是提取…...

Python并行计算和分布式任务全面指南

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python并行计算和分布式任务全面指南。全文2900字&#xff0c;阅读大约8分钟 并发编程是现代软件开发中不可或缺的一部分&#xff0c;它允许程序同时执行多个任务&#xff0…...

微信小程序promise封装

一. 在utils文件夹内创建一个request.js 写以下封装的 wx.request() 方法 const baseURL https:// 域名 ; //公用总路径地址 export const request (params) > { //暴露出去一个函数&#xff0c;并且接收一个外部传入的参数let dataObj params.data || {}; //…...

hash长度扩展攻击

作为一个信息安全的人&#xff0c;打各个学校的CTF比赛是比较重要的&#xff01; 最近一个朋友发了道题目过来&#xff0c;发现有道题目比较有意思&#xff0c;这里跟大家分享下 这串代码的大致意思是&#xff1a; 这段代码首先引入了一个名为"flag.php"的文件&am…...

设计模式--命令模式

实验16&#xff1a;命令模式 本次实验属于模仿型实验&#xff0c;通过本次实验学生将掌握以下内容&#xff1a; 1、理解命令模式的动机&#xff0c;掌握该模式的结构&#xff1b; 2、能够利用命令模式解决实际问题。 [实验任务]&#xff1a;多次撤销和重复的命令模式 某系…...

单例模式的七种写法

为什么使用单例&#xff1f; 避免重复创建对象,节省内存,方便管理;一般我们在工具类中频繁使用单例模式; 1.饿汉式(静态常量)-[可用] /*** 饿汉式(静态常量)*/ public class Singleton1 {private static final Singleton1 INSTANCE new Singleton1();private Singleton1(){}…...

ElasticSearch入门介绍和实战

目录 1.ElasticSearch简介 1.1 ElasticSearch&#xff08;简称ES&#xff09; 1.2 ElasticSearch与Lucene的关系 1.3 哪些公司在使用Elasticsearch 1.4 ES vs Solr比较 1.4.1 ES vs Solr 检索速度 2. Lucene全文检索框架 2.1 什么是全文检索 2.2 分词原理之倒排索引…...

【FPGA】分享一些FPGA视频图像处理相关的书籍

在做FPGA工程师的这些年&#xff0c;买过好多书&#xff0c;也看过好多书&#xff0c;分享一下。 后续会慢慢的补充书评。 【FPGA】分享一些FPGA入门学习的书籍【FPGA】分享一些FPGA协同MATLAB开发的书籍 【FPGA】分享一些FPGA视频图像处理相关的书籍 【FPGA】分享一些FPGA高速…...

AUTOSAR从入门到精通-车载以太网(四)

目录 前言 原理 车载以太网发展历史 为何选择车载以太网...

MySQL报错:1054 - Unknown column ‘xx‘ in ‘field list的解决方法

我在操作MySQL遇到1054报错&#xff0c;报错内容&#xff1a;1054 - Unknown column Cindy in field list&#xff0c;下面演示解决方法&#xff0c;非常简单。 根据箭头指示&#xff0c;Cindy对应的应该是VARCHAR文本数字类型&#xff0c;字符串要用引号&#xff0c;所以解决方…...

【Android 13】使用Android Studio调试系统应用之Settings移植(四):40+个依赖子模块之ActionBarShadow

文章目录 一、篇头二、系列文章2.1 Android 13 系列文章2.2 Android 9 系列文章2.3 Android 11 系列文章三、子模块AS移植3.1 AS创建目标3.2 创建ActionBarShadow(1)使用VS Code打开org_settings/SettingsLib目录(2)ActionBarShadow的Manifest.xml(3)ActionBarShadow的An…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...