当前位置: 首页 > news >正文

设计模式--命令模式

实验16:命令模式

本次实验属于模仿型实验,通过本次实验学生将掌握以下内容: 

1、理解命令模式的动机,掌握该模式的结构;

2、能够利用命令模式解决实际问题。

[实验任务]:多次撤销和重复的命令模式

某系统需要提供一个命令集合(注:可以使用链表,栈等集合对象实现),用于存储一系列命令对象,并通过该命令集合实现多次undo()和redo()操作,可以使用加法运算来模拟实现。

类图

源代码 

public abstract class AbstractCommand
{public abstract int execute(int value);//撤销public abstract int undo();//重做public abstract int redo();
}public class Adder
{private int num = 0;public int add(int value){num += value;return num;}
}public class CalculatorForm
{private AbstractCommand command;public void setCommand(AbstractCommand command){this.command = command;}public void compute(int value){int i = command.execute(value);System.out.println("执行运算,运算结果为:" + i);}public void undo(){int i = command.undo();System.out.println("执行撤销,运算结果为:" + i);}public void redo(){int i = command.redo();System.out.println("执行重做,运算结果为:" + i);}
}public class ConcreteCommand extends AbstractCommand
{private Adder adder = new Adder();private int value;@Overridepublic int execute(int value){this.value = value;return adder.add(value);}@Overridepublic int undo(){return adder.add(-value);}@Overridepublic int redo(){return adder.add(value);}
}/*** @author mendianyu*/
public class Client
{public static void main(String[] args){CalculatorForm form = new CalculatorForm();AbstractCommand command = new ConcreteCommand();form.setCommand(command);form.compute(10);form.compute(5);form.compute(10);form.undo();form.redo();form.undo();form.redo();}
}

运行效果

相关文章:

设计模式--命令模式

实验16:命令模式 本次实验属于模仿型实验,通过本次实验学生将掌握以下内容: 1、理解命令模式的动机,掌握该模式的结构; 2、能够利用命令模式解决实际问题。 [实验任务]:多次撤销和重复的命令模式 某系…...

单例模式的七种写法

为什么使用单例? 避免重复创建对象,节省内存,方便管理;一般我们在工具类中频繁使用单例模式; 1.饿汉式(静态常量)-[可用] /*** 饿汉式(静态常量)*/ public class Singleton1 {private static final Singleton1 INSTANCE new Singleton1();private Singleton1(){}…...

ElasticSearch入门介绍和实战

目录 1.ElasticSearch简介 1.1 ElasticSearch(简称ES) 1.2 ElasticSearch与Lucene的关系 1.3 哪些公司在使用Elasticsearch 1.4 ES vs Solr比较 1.4.1 ES vs Solr 检索速度 2. Lucene全文检索框架 2.1 什么是全文检索 2.2 分词原理之倒排索引…...

【FPGA】分享一些FPGA视频图像处理相关的书籍

在做FPGA工程师的这些年,买过好多书,也看过好多书,分享一下。 后续会慢慢的补充书评。 【FPGA】分享一些FPGA入门学习的书籍【FPGA】分享一些FPGA协同MATLAB开发的书籍 【FPGA】分享一些FPGA视频图像处理相关的书籍 【FPGA】分享一些FPGA高速…...

AUTOSAR从入门到精通-车载以太网(四)

目录 前言 原理 车载以太网发展历史 为何选择车载以太网...

MySQL报错:1054 - Unknown column ‘xx‘ in ‘field list的解决方法

我在操作MySQL遇到1054报错,报错内容:1054 - Unknown column Cindy in field list,下面演示解决方法,非常简单。 根据箭头指示,Cindy对应的应该是VARCHAR文本数字类型,字符串要用引号,所以解决方…...

【Android 13】使用Android Studio调试系统应用之Settings移植(四):40+个依赖子模块之ActionBarShadow

文章目录 一、篇头二、系列文章2.1 Android 13 系列文章2.2 Android 9 系列文章2.3 Android 11 系列文章三、子模块AS移植3.1 AS创建目标3.2 创建ActionBarShadow(1)使用VS Code打开org_settings/SettingsLib目录(2)ActionBarShadow的Manifest.xml(3)ActionBarShadow的An…...

nosql-redis整合测试

nosql-redis整合测试 1、创建项目并导入redis2、配置redis3、写测试类4、在redis中创建key5、访问80826、在集成测试中测试方法 1、创建项目并导入redis 2、配置redis 3、写测试类 4、在redis中创建key 5、访问8082 6、在集成测试中测试方法 package com.example.boot3.redis;…...

智能化中的控制与自动化中的控制不同

智能化中的控制相对于自动化中的控制更加灵活、智能、综合和学习能力强。智能化控制系统能够根据实际情况进行自主决策和优化,适用范围更广,效果更好。 首先,智能化控制系统能够根据外部环境的变化和实时数据的反馈来自主调整和优化控制策略&…...

java练习题之多态练习

1:关于多态描述错误的是(D) A. 父类型的引用指向不同的子类对象 B. 用引用调用方法,只能调用引用中声明的方法 C. 如果子类覆盖了父类中方法,则调用子类覆盖后的方法 D. 子类对象类型会随着引用类型的改变而改变 2:class Supe…...

[原创][R语言]股票分析实战[4]:周级别涨幅趋势的相关性

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XX QQ联系: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、D…...

esp32使用lvgl,给图片取模显示图片

使用LVGL官方工具。 https://lvgl.io/tools/imageconverter 上传图片,如果想要透明效果,那么选择 输出格式C array,点击Convert进行转换。 下载.c文件放置到工程下使用即可。...

R语言使用scitb包10分钟快速绘制论文基线表

scitb包目前进行了升级到1.7版本了,我做了一个操作视频,如何快速绘制基线表。 scitb包绘制基线表 可以配套看下我的关于scitb包文章理解一下 scitb包1.6版本发布,一个为制作专业统计表格而生的R包...

类和对象

1 类定义: class ChecksumAccumulator {// class definition goes here } 你就能创建 ChecksumAccumulator 对象:new CheckSumAccumulator 注:1scala类中成员默认是public类型,若设为私有属性则必须加private关键字。在scala中是…...

Py之tensorflow-addons:tensorflow-addons的简介、安装、使用方法之详细攻略

Py之tensorflow-addons:tensorflow-addons的简介、安装、使用方法之详细攻略 目录 tensorflow-addons的简介 tensorflow-addons的安装 tensorflow-addons的使用方法 1、使用 TensorFlow Addons 中的功能: tensorflow-addons的简介 TensorFlow Addon…...

STM32G4x FLASH 读写配置结构体(LL库下使用)

主要工作就是把HAL的超时用LL库延时替代,保留了中断擦写模式、轮询等待擦写,我已经验证了部分。 笔者用的芯片为STM32G473CBT6 128KB Flash,开环环境为CUBEMXMDK5.32,因为G4已经没有标准库了,笔者还是习惯使用标准库的…...

【AI提示词人物篇】创新艺术未来,让科技改变想象空间

AI 绘画学习难度和练习技巧 学习绘画的技巧 学习能难度: 外貌特征:AI需要学习识别和理解各种外貌特征,如发型、肤色、眼睛颜色等。这可能需要大量的训练数据和复杂的模型架构。 镜头提示:AI需要学习理解不同镜头提示的含义&…...

登录shell与非登录shell、交互式与非交互式shell的知识点详细总结

一、登录shell与非登录shell 1.登录shell定义:指的是当用户登录系统时所取的那个shell,登录shell属于交互式shell。 登陆shell通常指的是:用户通过输入用户名/密码(或证书认证)后启动的shell.例如: 当时…...

【教学类-42-02】20231224 X-Y 之间加法题判断题2.0(按2:8比例抽取正确题和错误题)

作品展示: 0-5: 21题,正确21题,错误21题42题 。小于44格子,都写上,哪怕输入2:8,实际也是5:5 0-10 66题,正确66题,错误66题132题 大于44格子,正确66题抽取44*…...

轻量Http客户端工具VSCode和IDEA

文章目录 前言Visual Studio Code 的插件 REST Client编写第一个案例进阶,设置变量进阶,设置Token IntelliJ IDEA 的 HTTP请求构建http脚本HTTP的环境配置结果值暂存 前言 作为一个WEB工程师,在日常的使用过程中,HTTP请求是必不可…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...

python读取SQLite表个并生成pdf文件

代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...

小白的进阶之路系列之十四----人工智能从初步到精通pytorch综合运用的讲解第七部分

通过示例学习PyTorch 本教程通过独立的示例介绍PyTorch的基本概念。 PyTorch的核心提供了两个主要特性: 一个n维张量,类似于numpy,但可以在gpu上运行 用于构建和训练神经网络的自动微分 我们将使用一个三阶多项式来拟合问题 y = s i n ( x ) y=sin(x) y=sin(x),作为我们的…...