当前位置: 首页 > news >正文

nosql-redis整合测试

nosql-redis整合测试

  • 1、创建项目并导入redis
  • 2、配置redis
  • 3、写测试类
  • 4、在redis中创建key
  • 5、访问8082
  • 6、在集成测试中测试方法

1、创建项目并导入redis

在这里插入图片描述

2、配置redis

在这里插入图片描述

3、写测试类

在这里插入图片描述

4、在redis中创建key

在这里插入图片描述

5、访问8082

在这里插入图片描述

6、在集成测试中测试方法

package com.example.boot3.redis;import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;import java.util.UUID;@SpringBootTest
class Boot307RedisApplicationTests {@AutowiredStringRedisTemplate redisTemplate;//    常见的数据类型 k:v value可以有很多类型//    string: 普通字符串: redisTemplate.opsForValue()//    list: 列表: redisTemplate.opsForList()//    set: 集合: redisTemplate.opsForSet()//    zset: 有序集合: redisTemplate.opsForZSet()//    hash: map结构: redisTemplate.opsForHash()@Testvoid contextLoads() {redisTemplate.opsForValue().set("haha", UUID.randomUUID().toString());String haha = redisTemplate.opsForValue().get("haha");System.out.println(haha);}@Testvoid testList(){String listName = "listtest";redisTemplate.opsForList().leftPush(listName,"1");redisTemplate.opsForList().leftPush(listName,"2");redisTemplate.opsForList().leftPush(listName,"3");String pop = redisTemplate.opsForList().leftPop(listName);Assertions.assertEquals("3",pop);}@Testvoid testSet(){String setName = "setest";redisTemplate.opsForSet().add(setName,"1","2");Boolean aBoolean = redisTemplate.opsForSet().isMember(setName,"2");Assertions.assertTrue(aBoolean);Boolean aBoolean1 = redisTemplate.opsForSet().isMember(setName, "5");Assertions.assertFalse(aBoolean1);}@Testvoid testZSet(){String setName = "zsetest";redisTemplate.opsForZSet().add(setName,"类放羊",90.00);redisTemplate.opsForZSet().add(setName,"张三",91.00);redisTemplate.opsForZSet().add(setName,"李四",91.20);redisTemplate.opsForZSet().add(setName,"王五",92.00);ZSetOperations.TypedTuple<String> popMax = redisTemplate.opsForZSet().popMax(setName);String value = popMax.getValue();Double score = popMax.getScore();System.out.println(value + "==>" + score);}@Testvoid testHash(){String mapName = "amap";redisTemplate.opsForHash().put(mapName,"name","张三");redisTemplate.opsForHash().put(mapName,"age","18");System.out.println(redisTemplate.opsForHash().get(mapName,"name"));System.out.println(redisTemplate.opsForHash().get(mapName,"age"));}}

相关文章:

nosql-redis整合测试

nosql-redis整合测试 1、创建项目并导入redis2、配置redis3、写测试类4、在redis中创建key5、访问80826、在集成测试中测试方法 1、创建项目并导入redis 2、配置redis 3、写测试类 4、在redis中创建key 5、访问8082 6、在集成测试中测试方法 package com.example.boot3.redis;…...

智能化中的控制与自动化中的控制不同

智能化中的控制相对于自动化中的控制更加灵活、智能、综合和学习能力强。智能化控制系统能够根据实际情况进行自主决策和优化&#xff0c;适用范围更广&#xff0c;效果更好。 首先&#xff0c;智能化控制系统能够根据外部环境的变化和实时数据的反馈来自主调整和优化控制策略&…...

java练习题之多态练习

1&#xff1a;关于多态描述错误的是(D) A. 父类型的引用指向不同的子类对象 B. 用引用调用方法&#xff0c;只能调用引用中声明的方法 C. 如果子类覆盖了父类中方法&#xff0c;则调用子类覆盖后的方法 D. 子类对象类型会随着引用类型的改变而改变 2&#xff1a;class Supe…...

[原创][R语言]股票分析实战[4]:周级别涨幅趋势的相关性

[简介] 常用网名: 猪头三 出生日期: 1981.XX.XX QQ联系: 643439947 个人网站: 80x86汇编小站 https://www.x86asm.org 编程生涯: 2001年~至今[共22年] 职业生涯: 20年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、D…...

esp32使用lvgl,给图片取模显示图片

使用LVGL官方工具。 https://lvgl.io/tools/imageconverter 上传图片&#xff0c;如果想要透明效果&#xff0c;那么选择 输出格式C array&#xff0c;点击Convert进行转换。 下载.c文件放置到工程下使用即可。...

R语言使用scitb包10分钟快速绘制论文基线表

scitb包目前进行了升级到1.7版本了&#xff0c;我做了一个操作视频&#xff0c;如何快速绘制基线表。 scitb包绘制基线表 可以配套看下我的关于scitb包文章理解一下 scitb包1.6版本发布&#xff0c;一个为制作专业统计表格而生的R包...

类和对象

1 类定义&#xff1a; class ChecksumAccumulator {// class definition goes here } 你就能创建 ChecksumAccumulator 对象&#xff1a;new CheckSumAccumulator 注&#xff1a;1scala类中成员默认是public类型&#xff0c;若设为私有属性则必须加private关键字。在scala中是…...

Py之tensorflow-addons:tensorflow-addons的简介、安装、使用方法之详细攻略

Py之tensorflow-addons&#xff1a;tensorflow-addons的简介、安装、使用方法之详细攻略 目录 tensorflow-addons的简介 tensorflow-addons的安装 tensorflow-addons的使用方法 1、使用 TensorFlow Addons 中的功能&#xff1a; tensorflow-addons的简介 TensorFlow Addon…...

STM32G4x FLASH 读写配置结构体(LL库下使用)

主要工作就是把HAL的超时用LL库延时替代&#xff0c;保留了中断擦写模式、轮询等待擦写&#xff0c;我已经验证了部分。 笔者用的芯片为STM32G473CBT6 128KB Flash&#xff0c;开环环境为CUBEMXMDK5.32&#xff0c;因为G4已经没有标准库了&#xff0c;笔者还是习惯使用标准库的…...

【AI提示词人物篇】创新艺术未来,让科技改变想象空间

AI 绘画学习难度和练习技巧 学习绘画的技巧 学习能难度&#xff1a; 外貌特征&#xff1a;AI需要学习识别和理解各种外貌特征&#xff0c;如发型、肤色、眼睛颜色等。这可能需要大量的训练数据和复杂的模型架构。 镜头提示&#xff1a;AI需要学习理解不同镜头提示的含义&…...

登录shell与非登录shell、交互式与非交互式shell的知识点详细总结

一、登录shell与非登录shell 1.登录shell定义&#xff1a;指的是当用户登录系统时所取的那个shell&#xff0c;登录shell属于交互式shell。 登陆shell通常指的是&#xff1a;用户通过输入用户名/密码&#xff08;或证书认证&#xff09;后启动的shell.例如&#xff1a; 当时…...

【教学类-42-02】20231224 X-Y 之间加法题判断题2.0(按2:8比例抽取正确题和错误题)

作品展示&#xff1a; 0-5&#xff1a; 21题&#xff0c;正确21题&#xff0c;错误21题42题 。小于44格子&#xff0c;都写上&#xff0c;哪怕输入2:8&#xff0c;实际也是5:5 0-10 66题&#xff0c;正确66题&#xff0c;错误66题132题 大于44格子&#xff0c;正确66题抽取44*…...

轻量Http客户端工具VSCode和IDEA

文章目录 前言Visual Studio Code 的插件 REST Client编写第一个案例进阶&#xff0c;设置变量进阶&#xff0c;设置Token IntelliJ IDEA 的 HTTP请求构建http脚本HTTP的环境配置结果值暂存 前言 作为一个WEB工程师&#xff0c;在日常的使用过程中&#xff0c;HTTP请求是必不可…...

机器学习或深度学习的数据读取工作(大数据处理)

机器学习或深度学习的数据读取工作&#xff08;大数据处理&#xff09;主要是.split和re.findall和glob.glob运用。 读取文件的路径&#xff08;为了获得文件内容&#xff09;和提取文件路径中感兴趣的东西(标签) 1&#xff0c;“glob.glob”用于读取文件路径 2&#xff0c;“.…...

Rust 生命周期

Rust 第17节 生命周期 先看一段错误代码 /* //一段错误的代码 // Rust 编译时会报错&#xff1b; */let r;{let x 5;r &x;}println!("{}",r);Rust 在编译时使用 借用检查器&#xff0c; 比较作用域来检查所有的借用是否合法&#xff1b; 很明显&#xff1b;r…...

【论文解读】CNN-Based Fast HEVC Quantization Parameter Mode Decision

时间&#xff1a;2019 年 级别&#xff1a;SCI 机构&#xff1a;南京信息工程大学 摘要 随着多媒体呈现技术、图像采集技术和互联网行业的发展&#xff0c;远程通信的方式已经从以前的书信、音频转变为现在的音频/视频。和 视频在工作、学习和娱乐中的比例不断提高&#xff0…...

在Linux上安装CLion

本教程将指导你如何在Linux系统上安装CLion&#xff0c;下载地址为&#xff1a;https://download.jetbrains.com.cn/cpp/CLion-2022.3.3.tar.gz。以下是详细的安装步骤&#xff1a; 步骤1&#xff1a;下载CLion 首先&#xff0c;你需要使用wget命令从提供的URL下载CLion的tar…...

R语言贝叶斯网络模型、INLA下的贝叶斯回归、R语言现代贝叶斯统计学方法、R语言混合效应(多水平/层次/嵌套)模型

目录 ㈠ 基于R语言的贝叶斯网络模型的实践技术应用 ㈡ R语言贝叶斯方法在生态环境领域中的高阶技术应用 ㈢ 基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析 ㈣ 基于R语言的现代贝叶斯统计学方法&#xff08;贝叶斯参数估…...

多维时序 | Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多变量时间序列预测

多维时序 | Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多变量时间序列预测 目录 多维时序 | Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多…...

Oracle 学习(1)

Oracle简介 Oracle是殷墟&#xff08;yīn Xu&#xff09;出土的甲骨文&#xff08;oracle bone inscriptions&#xff09;的英文翻译的第一个单词&#xff0c;在英语里是“神谕”的意思。Oracle公司成立于1977年&#xff0c;总部位于美国加州&#xff0c;是世界领先的信息管…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...