Matlab仿真2ASK/OOK、2FSK、2PSK、QPSK、4QAM在加性高斯白噪声信道中的误码率与归一化信噪比的关系
本文为学习所用,严禁转载。
本文参考链接
https://zhuanlan.zhihu.com/p/667382398 QPSK代码及高斯白噪声如何产生
https://ww2.mathworks.cn/help/signal/ref/butter.html 滤波器
https://www.python100.com/html/4LEF79KQK398.html 低通滤波器
本实验使用matlab仿真了五种数字调制方式(OOK、2FSK、2PSK、QPSK、4QAM)在加性高斯白噪声信道中的误码率,与归一化信噪比的关系。其中码元速率为100bps,码元个数为6666,OOK、BPSK载波频率为1KHz,2FSK两个载波频率分别为1KHz,500Hz。OOK、2FSK、2PSK均采用相干解调的方式。下面是各种调制解调方式下的误码率曲线。
clear all;
close all;
clc;
M = 6666; % 产生码元数
L = 100; % 每码元复制L次,方便观察
Ts = 0.01; % 每个码元的宽度,即码元的持续时间
Rb = 1/Ts; % 码元速率
dt = Ts/L; % 采样间隔
Fs = 1/dt; % 采样率
TotalT = M*Ts; % 总时间
t = 0:dt:TotalT-dt; % 时间
fc1 = 10*Rb; % 载波频率是码元速率的10倍,即载波的周期是码元周期的1/10
fc2 = 4*Rb; % 2fsk另一个载波的频率
SNR = -10:0.5:10; % 信噪比范围BER_ask2 = zeros(1,length(SNR)); % 2ASK误码率
BER_psk2 = zeros(1,length(SNR)); % BPSK误码率
BER_fsk2 = zeros(1,length(SNR)); % 2FSK误码率
BER_qpsk = zeros(1,length(SNR)); % QPSK误码率
BER_qam4 = zeros(1,length(SNR)); % 4QAM误码率% 产生二进制随机数据data_ask2 = randi([0,1],1,M);%产生0和1的二进制随机数data_fsk2 = randi([0,1],1,M);%产生0和1的二进制随机数data_psk2 = data_ask2*2 -1 ;%借助2ASK的随机数产生-1和1的二进制随机数data_qpsk = randi([0 3],M,1);%qpsk的码元范围是0~3data_qam4 = randi([0 3],M,1);%qam的码元范围是0~3% 产生单极性不归零矩形脉冲波形data_sample_ask2 = repmat(data_ask2,L,1); % 每个码元复制L次data_sample_ask2 = reshape(data_sample_ask2,1,M*L); % 产生单极性不归零矩形脉冲波形data_sample_psk2 = repmat(data_psk2,L,1); % 每个码元复制L次data_sample_psk2 = reshape(data_sample_psk2,1,M*L); % 产生双极性不归零矩形脉冲波形data_sample_fsk2 = repmat(data_fsk2,L,1); % 每个码元复制L次data_sample_fsk2 = reshape(data_sample_fsk2,1,M*L); % 产生单极性不归零矩形脉冲波形% 产生2ASK已调信号
carrier1 = cos(2*pi*fc1*t); % 载波1的正弦波
carrier2 = cos(2*pi*fc2*t); % 载波2的正弦波mod_ask2 = data_sample_ask2.*carrier1; % 2ASK的调制mod_psk2 = data_sample_psk2.*carrier1; % 2PSK的调制mod_fsk2 = data_sample_fsk2.*carrier1 + (1-data_sample_fsk2).*carrier2;% 2FSK的调制mod_qpsk = pskmod(data_qpsk,4,pi/4);% QPSK的调制mod_qam4 = qammod(data_qam4,4);% 4QAM的调制for i = 1:length(SNR)% 通过实时测量已调信号的功率,对已调信号加入高斯白噪声noise_ask2 = awgn (mod_ask2,SNR(i),'measured');noise_psk2 = awgn (mod_psk2,SNR(i),'measured');noise_fsk2 = awgn (mod_fsk2,SNR(i),'measured');noise_qpsk = awgn (mod_qpsk,SNR(i),'measured');noise_qam4 = awgn (mod_qam4,SNR(i),'measured');% 对接受信号进行带通滤波,滤除通频带外的噪声[b1,a1] = butter(4,[0.8*fc1 1.2*fc1]/(Fs/2),'bandpass'); % 设计带通滤波器[b2,a2] = butter(4,[0.8*fc2 1.2*fc2]/(Fs/2),'bandpass'); % 设计带通滤波器r_ask2 = filter(b1,a1,noise_ask2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_psk2 = filter(b1,a1,noise_psk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_fsk2_fc1 = filter(b1,a1,noise_fsk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_fsk2_fc2 = filter(b2,a2,noise_fsk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声% 对接收信号进行相干解调dem_ask2 = r_ask2.*carrier1;dem_psk2 = r_psk2.*carrier1;dem_fsk2_fc1 = 2*r_fsk2_fc1.*carrier1;dem_fsk2_fc2 = 2*r_fsk2_fc2.*carrier2;% 对解调信号进行低通滤波,滤除载波倍频分量,以获得码元coe_lowpass = fir1(6,2*fc1/Fs); % 低通滤波,将两倍的载波频率分量滤除lowpass_ask2 = filter(coe_lowpass,1,dem_ask2); lowpass_psk2 = filter(coe_lowpass,1,dem_psk2);lowpass_fsk2_fc1 = filter(coe_lowpass,1,dem_fsk2_fc1);lowpass_fsk2_fc2 = filter(coe_lowpass,1,dem_fsk2_fc2); % 对解调信号进行抽样判决sample_ask2 = lowpass_ask2(L/2:L:end); % 码元中点时间抽样sample_psk2 = lowpass_psk2(L/2:L:end); % 码元中点时间抽样sample_fsk2_fc1 = lowpass_fsk2_fc1(L/2:L:end); % 码元中点时间抽样sample_fsk2_fc2 = lowpass_fsk2_fc2(L/2:L:end); % 码元中点时间抽样decision_ask2 = (sample_ask2>0.5);decision_psk2 = (sample_psk2>0);decision_fsk2 = (sample_fsk2_fc1>sample_fsk2_fc2); decision_qpsk = pskdemod(noise_qpsk,4,pi/4);decision_qam4 = qamdemod(noise_qam4,4);% 计算误码个数和误码率error_ask2 = sum(xor(data_ask2,decision_ask2));error_psk2 = sum(xor(data_ask2,decision_psk2)); %这里因为PSK是ASK的随机序列产生的,所以和ASK比较error_fsk2 = sum(xor(data_fsk2,decision_fsk2)); error_qpsk = sum(xor(data_qpsk,decision_qpsk)); error_qam4 = sum(xor(data_qam4,decision_qam4)); BER_ask2(i) = error_ask2/M; % 2ASK误码率BER_psk2(i) = error_psk2/M; % 2PSK误码率BER_fsk2(i) = error_fsk2/M; % 2FSK误码率BER_qpsk(i) = error_qpsk/M; % QPSK误码率BER_qam4(i) = error_qam4/M; % 4QAM误码率
end
% 计算理论误码率
% Pe = zeros(1,length(SNR));
% for i = 1:length(SNR)
% r = 10^(SNR(i)/10);
% Pe(i) = qfunc(sqrt(r)); % 2ASK理论误码率公式
% end
% 绘制误码率曲线% semilogy横轴是线性,纵轴10倍一格
semilogy(SNR,BER_ask2,'b-d','LineWidth',2); % 2ASK仿真曲线
hold on;
semilogy(SNR,BER_psk2,'y-h','LineWidth',2); % BPSK仿真曲线
hold on;
semilogy(SNR,BER_fsk2,'g-o','LineWidth',2); % 2FSK仿真曲线
hold on;
semilogy(SNR,BER_qpsk,'k-*','LineWidth',2); % QPSK仿真曲线
hold on;
semilogy(SNR,BER_qam4,'r-s','LineWidth',2); % 4QAM仿真曲线
hold on;
% semilogy(SNR,Pe,'m-+'); % 理论曲线
% grid on;xlabel('归一化信噪比Eb/N0 (dB)');
ylabel('误码率BER');
legend('OOK','BPSK','2FSK','QPSK','4QAM');
title('误码率曲线');
经过上述仿真得到误码率曲线如下。
相关文章:

Matlab仿真2ASK/OOK、2FSK、2PSK、QPSK、4QAM在加性高斯白噪声信道中的误码率与归一化信噪比的关系
本文为学习所用,严禁转载。 本文参考链接 https://zhuanlan.zhihu.com/p/667382398 QPSK代码及高斯白噪声如何产生 https://ww2.mathworks.cn/help/signal/ref/butter.html 滤波器 https://www.python100.com/html/4LEF79KQK398.html 低通滤波器 本实验使用matlab仿…...

九:爬虫-MongoDB基础
MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其…...

机器学习之实验过程01
import pandas as pd import numpy as np import matplotlib.pyplot as plt data_path /home/py/Work/labs/data/SD.csv # 请确保您的数据文件路径是正确的 df pd.read_csv(data_path) df.head() # 创建散点图 # 创建散点图 plt.figure(figsize(10, 6)) plt.scatter…...

【【迭代16次的CORDIC算法-verilog实现】】
迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...

IntelliJ IDEA 2023.3 安装教程
引言 IntelliJ IDEA,通常简称为 IDEA,是由 JetBrains 开发的一款强大的集成开发环境,专为提升开发者的生产力而设计。它支持多种编程语言,包括 Java、Kotlin、Scala 和其他 JVM 语言,同时也为前端开发和移动应用开发提…...
Go 错误处理
Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型,这是它的定义: type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...

HarmonyOS构建第一个ArkTS应用(Stage模型)
构建第一个ArkTS应用(Stage模型) 创建ArkTS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发…...
故障排查利器-错误日志详解
目录 什么是错误日志 错误日志的作用 错误日志的内容 错误日志的格式 错误日志的生成方式 错误日志的解析和处理 错误日志的最佳实践 小结 错误日志是软件开发和运维中非常重要的一部分,记录了应用程序运行过程中发生的错误和异常信息,如错误类型…...

微信小程序(uniapp)api讲解
Uniapp是一个基于Vue.js的跨平台开发框架,可以同时开发微信小程序、H5、App等多个平台的应用。下面是Uniapp常用的API讲解: Vue.js的API Uniapp采用了Vue.js框架,因此可以直接使用Vue.js的API。例如:v-show、v-if、v-for、comput…...
overtureDNS使用介绍
Overture是一个定制的DNS中继服务器。 在此下在二进制版本 https://github.com/shawn1m/overture/releases默认配置文件./config.yml bindAddress: :53 debugHTTPAddress: 127.0.0.1:5555 dohEnabled: false primaryDNS:- name: DNSPodaddress: 119.29.29.29:53protocol: udp…...

平衡二叉树的构建(递归
目录 1.概念:2.特点:3.构建方法:4.代码:小结: 1.概念: 平衡二叉树(Balanced Binary Tree),也称为AVL树,是一种二叉树,它满足每个节点的左子树和右…...

flutter开发实战-设置bottomNavigationBar中间按钮悬浮效果
flutter开发实战-设置bottomNavigationBar中间按钮悬浮的效果 在使用tabbar时候,可以使用bottomNavigationBar来设置中间凸起的按钮,如下 一、效果图 中间按钮凸起的效果图如下 二、实现代码 我们使用BottomAppBar 一个容器,通常与[Sscaf…...

不同参数规模大语言模型在不同微调方法下所需要的显存总结
原文来自DataLearnerAI官方网站: 不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255 大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任…...
Crow:Middlewares 庖丁解牛6 middleware_call_helper
Crow:http请求到Rule绑定的handler_的调用链-CSDN博客 介绍了handler_的调用顺序,其中的一个调用过程是Connection::->handle void handle() {...ctx_ = detail::context<Middlewares...>();req_.middleware_context = static_cast<void*>(&ctx_);req_.m…...

MyBatis:Generator
MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址:Introduction to MyBatis Generator Generator ,一个用于 MyBatis 的代码生成工具,可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件,提高…...
rabbitmq的事务实现、消费者的事务实现
RabbitMQ提供了事务机制,可以确保消息在发送和确认过程中的一致性。使用事务机制可以将一系列的消息操作(发送、确认、回滚)作为一个原子操作,要么全部执行成功,要么全部回滚。 下面是使用RabbitMQ事务的一般步骤&…...

龙芯杯个人赛串口——做一个 UART串口——RS-232
文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码: 4.RS-232 receiver…...

验证码服务使用指南
验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录…...

js中Math.min(...arr)和Math.max(...arr)的注意点
当arr变量为空数组时,这两个函数和不传参数时的结果是一样的 Math.max() // -Infinity Math.max(...[]) // -InfinityMath.min() // Infinity Math.min(...[]) // Infinity...
【zookeeper特点和集群架构】
文章目录 1. Zookeeper介绍2、ZooKeeper数据结构3、Zookeeper集群架构 1. Zookeeper介绍 ZooKeeper 是一个开源的分布式协调框架,是Apache Hadoop 的一个子项目,主要用来解决分 布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容易…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...

Axure Rp 11 安装、汉化、授权
Axure Rp 11 安装、汉化、授权 1、前言2、汉化2.1、汉化文件下载2.2、windows汉化流程2.3、 macOs汉化流程 3、授权 1、前言 Axure Rp 11官方下载链接:https://www.axure.com/downloadthanks 2、汉化 2.1、汉化文件下载 链接: https://pan.baidu.com/s/18Clf…...

【AI News | 20250609】每日AI进展
AI Repos 1、OpenHands-Versa OpenHands-Versa 是一个通用型 AI 智能体,通过结合代码编辑与执行、网络搜索、多模态网络浏览和文件访问等通用工具,在软件工程、网络导航和工作流自动化等多个领域展现出卓越性能。它在 SWE-Bench Multimodal、GAIA 和 Th…...