当前位置: 首页 > news >正文

Matlab仿真2ASK/OOK、2FSK、2PSK、QPSK、4QAM在加性高斯白噪声信道中的误码率与归一化信噪比的关系

本文为学习所用,严禁转载。

本文参考链接
https://zhuanlan.zhihu.com/p/667382398 QPSK代码及高斯白噪声如何产生
https://ww2.mathworks.cn/help/signal/ref/butter.html 滤波器
https://www.python100.com/html/4LEF79KQK398.html 低通滤波器

本实验使用matlab仿真了五种数字调制方式(OOK、2FSK、2PSK、QPSK、4QAM)在加性高斯白噪声信道中的误码率,与归一化信噪比的关系。其中码元速率为100bps,码元个数为6666,OOK、BPSK载波频率为1KHz,2FSK两个载波频率分别为1KHz,500Hz。OOK、2FSK、2PSK均采用相干解调的方式。下面是各种调制解调方式下的误码率曲线。


clear all; 
close all; 
clc;
M = 6666; % 产生码元数
L = 100; % 每码元复制L次,方便观察
Ts = 0.01; % 每个码元的宽度,即码元的持续时间
Rb = 1/Ts; % 码元速率
dt = Ts/L; % 采样间隔
Fs = 1/dt; % 采样率
TotalT = M*Ts; % 总时间
t = 0:dt:TotalT-dt; % 时间
fc1 = 10*Rb; % 载波频率是码元速率的10倍,即载波的周期是码元周期的1/10
fc2 =  4*Rb; % 2fsk另一个载波的频率
SNR = -10:0.5:10; % 信噪比范围BER_ask2 = zeros(1,length(SNR)); % 2ASK误码率
BER_psk2 = zeros(1,length(SNR)); % BPSK误码率
BER_fsk2 = zeros(1,length(SNR)); % 2FSK误码率
BER_qpsk = zeros(1,length(SNR)); % QPSK误码率
BER_qam4 = zeros(1,length(SNR)); % 4QAM误码率% 产生二进制随机数据data_ask2 = randi([0,1],1,M);%产生0和1的二进制随机数data_fsk2 = randi([0,1],1,M);%产生0和1的二进制随机数data_psk2 = data_ask2*2 -1  ;%借助2ASK的随机数产生-1和1的二进制随机数data_qpsk = randi([0 3],M,1);%qpsk的码元范围是0~3data_qam4 = randi([0 3],M,1);%qam的码元范围是0~3% 产生单极性不归零矩形脉冲波形data_sample_ask2 = repmat(data_ask2,L,1); % 每个码元复制L次data_sample_ask2 = reshape(data_sample_ask2,1,M*L); % 产生单极性不归零矩形脉冲波形data_sample_psk2 = repmat(data_psk2,L,1); % 每个码元复制L次data_sample_psk2 = reshape(data_sample_psk2,1,M*L); % 产生双极性不归零矩形脉冲波形data_sample_fsk2 = repmat(data_fsk2,L,1); % 每个码元复制L次data_sample_fsk2 = reshape(data_sample_fsk2,1,M*L); % 产生单极性不归零矩形脉冲波形% 产生2ASK已调信号
carrier1 = cos(2*pi*fc1*t); % 载波1的正弦波
carrier2 = cos(2*pi*fc2*t); % 载波2的正弦波mod_ask2 = data_sample_ask2.*carrier1; % 2ASK的调制mod_psk2 = data_sample_psk2.*carrier1; % 2PSK的调制mod_fsk2 = data_sample_fsk2.*carrier1 + (1-data_sample_fsk2).*carrier2;% 2FSK的调制mod_qpsk = pskmod(data_qpsk,4,pi/4);% QPSK的调制mod_qam4 = qammod(data_qam4,4);% 4QAM的调制for i = 1:length(SNR)% 通过实时测量已调信号的功率,对已调信号加入高斯白噪声noise_ask2 = awgn (mod_ask2,SNR(i),'measured');noise_psk2 = awgn (mod_psk2,SNR(i),'measured');noise_fsk2 = awgn (mod_fsk2,SNR(i),'measured');noise_qpsk = awgn (mod_qpsk,SNR(i),'measured');noise_qam4 = awgn (mod_qam4,SNR(i),'measured');% 对接受信号进行带通滤波,滤除通频带外的噪声[b1,a1] = butter(4,[0.8*fc1 1.2*fc1]/(Fs/2),'bandpass'); % 设计带通滤波器[b2,a2] = butter(4,[0.8*fc2 1.2*fc2]/(Fs/2),'bandpass'); % 设计带通滤波器r_ask2 = filter(b1,a1,noise_ask2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_psk2 = filter(b1,a1,noise_psk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_fsk2_fc1 =  filter(b1,a1,noise_fsk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声r_fsk2_fc2 =  filter(b2,a2,noise_fsk2); % 对接收的已调信号进行带通滤波,,滤除带外噪声% 对接收信号进行相干解调dem_ask2 = r_ask2.*carrier1;dem_psk2 = r_psk2.*carrier1;dem_fsk2_fc1 = 2*r_fsk2_fc1.*carrier1;dem_fsk2_fc2 = 2*r_fsk2_fc2.*carrier2;% 对解调信号进行低通滤波,滤除载波倍频分量,以获得码元coe_lowpass = fir1(6,2*fc1/Fs); % 低通滤波,将两倍的载波频率分量滤除lowpass_ask2 = filter(coe_lowpass,1,dem_ask2); lowpass_psk2 = filter(coe_lowpass,1,dem_psk2);lowpass_fsk2_fc1 = filter(coe_lowpass,1,dem_fsk2_fc1);lowpass_fsk2_fc2 = filter(coe_lowpass,1,dem_fsk2_fc2); % 对解调信号进行抽样判决sample_ask2 = lowpass_ask2(L/2:L:end); % 码元中点时间抽样sample_psk2 = lowpass_psk2(L/2:L:end); % 码元中点时间抽样sample_fsk2_fc1 = lowpass_fsk2_fc1(L/2:L:end); % 码元中点时间抽样sample_fsk2_fc2 = lowpass_fsk2_fc2(L/2:L:end); % 码元中点时间抽样decision_ask2 = (sample_ask2>0.5);decision_psk2 = (sample_psk2>0);decision_fsk2 = (sample_fsk2_fc1>sample_fsk2_fc2); decision_qpsk = pskdemod(noise_qpsk,4,pi/4);decision_qam4 = qamdemod(noise_qam4,4);% 计算误码个数和误码率error_ask2 = sum(xor(data_ask2,decision_ask2));error_psk2 = sum(xor(data_ask2,decision_psk2)); %这里因为PSK是ASK的随机序列产生的,所以和ASK比较error_fsk2 = sum(xor(data_fsk2,decision_fsk2)); error_qpsk = sum(xor(data_qpsk,decision_qpsk)); error_qam4 = sum(xor(data_qam4,decision_qam4)); BER_ask2(i) = error_ask2/M; % 2ASK误码率BER_psk2(i) = error_psk2/M; % 2PSK误码率BER_fsk2(i) = error_fsk2/M; % 2FSK误码率BER_qpsk(i) = error_qpsk/M; % QPSK误码率BER_qam4(i) = error_qam4/M; % 4QAM误码率
end
% 计算理论误码率
% Pe = zeros(1,length(SNR));
% for i = 1:length(SNR)
% r = 10^(SNR(i)/10);
% Pe(i) = qfunc(sqrt(r)); % 2ASK理论误码率公式
% end
% 绘制误码率曲线% semilogy横轴是线性,纵轴10倍一格
semilogy(SNR,BER_ask2,'b-d','LineWidth',2); % 2ASK仿真曲线
hold on;
semilogy(SNR,BER_psk2,'y-h','LineWidth',2); % BPSK仿真曲线
hold on;
semilogy(SNR,BER_fsk2,'g-o','LineWidth',2); % 2FSK仿真曲线
hold on;
semilogy(SNR,BER_qpsk,'k-*','LineWidth',2); % QPSK仿真曲线
hold on;
semilogy(SNR,BER_qam4,'r-s','LineWidth',2); % 4QAM仿真曲线
hold on;
% semilogy(SNR,Pe,'m-+'); % 理论曲线
% grid on;xlabel('归一化信噪比Eb/N0 (dB)');
ylabel('误码率BER');
legend('OOK','BPSK','2FSK','QPSK','4QAM');
title('误码率曲线');

经过上述仿真得到误码率曲线如下。

在这里插入图片描述

相关文章:

Matlab仿真2ASK/OOK、2FSK、2PSK、QPSK、4QAM在加性高斯白噪声信道中的误码率与归一化信噪比的关系

本文为学习所用,严禁转载。 本文参考链接 https://zhuanlan.zhihu.com/p/667382398 QPSK代码及高斯白噪声如何产生 https://ww2.mathworks.cn/help/signal/ref/butter.html 滤波器 https://www.python100.com/html/4LEF79KQK398.html 低通滤波器 本实验使用matlab仿…...

九:爬虫-MongoDB基础

MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其…...

机器学习之实验过程01

import pandas as pd import numpy as np import matplotlib.pyplot as plt data_path /home/py/Work/labs/data/SD.csv # 请确保您的数据文件路径是正确的 df pd.read_csv(data_path) df.head() # 创建散点图 # 创建散点图 plt.figure(figsize(10, 6)) plt.scatter…...

【【迭代16次的CORDIC算法-verilog实现】】

迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...

IntelliJ IDEA 2023.3 安装教程

引言 IntelliJ IDEA,通常简称为 IDEA,是由 JetBrains 开发的一款强大的集成开发环境,专为提升开发者的生产力而设计。它支持多种编程语言,包括 Java、Kotlin、Scala 和其他 JVM 语言,同时也为前端开发和移动应用开发提…...

Go 错误处理

Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型,这是它的定义: type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...

HarmonyOS构建第一个ArkTS应用(Stage模型)

构建第一个ArkTS应用(Stage模型) 创建ArkTS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发…...

故障排查利器-错误日志详解

目录 什么是错误日志 错误日志的作用 错误日志的内容 错误日志的格式 错误日志的生成方式 错误日志的解析和处理 错误日志的最佳实践 小结 错误日志是软件开发和运维中非常重要的一部分,记录了应用程序运行过程中发生的错误和异常信息,如错误类型…...

微信小程序(uniapp)api讲解

Uniapp是一个基于Vue.js的跨平台开发框架,可以同时开发微信小程序、H5、App等多个平台的应用。下面是Uniapp常用的API讲解: Vue.js的API Uniapp采用了Vue.js框架,因此可以直接使用Vue.js的API。例如:v-show、v-if、v-for、comput…...

overtureDNS使用介绍

Overture是一个定制的DNS中继服务器。 在此下在二进制版本 https://github.com/shawn1m/overture/releases默认配置文件./config.yml bindAddress: :53 debugHTTPAddress: 127.0.0.1:5555 dohEnabled: false primaryDNS:- name: DNSPodaddress: 119.29.29.29:53protocol: udp…...

平衡二叉树的构建(递归

目录 1.概念:2.特点:3.构建方法:4.代码:小结: 1.概念: 平衡二叉树(Balanced Binary Tree),也称为AVL树,是一种二叉树,它满足每个节点的左子树和右…...

flutter开发实战-设置bottomNavigationBar中间按钮悬浮效果

flutter开发实战-设置bottomNavigationBar中间按钮悬浮的效果 在使用tabbar时候,可以使用bottomNavigationBar来设置中间凸起的按钮,如下 一、效果图 中间按钮凸起的效果图如下 二、实现代码 我们使用BottomAppBar 一个容器,通常与[Sscaf…...

不同参数规模大语言模型在不同微调方法下所需要的显存总结

原文来自DataLearnerAI官方网站: 不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255 大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任…...

Crow:Middlewares 庖丁解牛6 middleware_call_helper

Crow:http请求到Rule绑定的handler_的调用链-CSDN博客 介绍了handler_的调用顺序,其中的一个调用过程是Connection::->handle void handle() {...ctx_ = detail::context<Middlewares...>();req_.middleware_context = static_cast<void*>(&ctx_);req_.m…...

MyBatis:Generator

MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址&#xff1a;Introduction to MyBatis Generator Generator &#xff0c;一个用于 MyBatis 的代码生成工具&#xff0c;可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件&#xff0c;提高…...

rabbitmq的事务实现、消费者的事务实现

RabbitMQ提供了事务机制&#xff0c;可以确保消息在发送和确认过程中的一致性。使用事务机制可以将一系列的消息操作&#xff08;发送、确认、回滚&#xff09;作为一个原子操作&#xff0c;要么全部执行成功&#xff0c;要么全部回滚。 下面是使用RabbitMQ事务的一般步骤&…...

龙芯杯个人赛串口——做一个 UART串口——RS-232

文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码&#xff1a; 4.RS-232 receiver…...

验证码服务使用指南

验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录&#xf…...

js中Math.min(...arr)和Math.max(...arr)的注意点

当arr变量为空数组时&#xff0c;这两个函数和不传参数时的结果是一样的 Math.max() // -Infinity Math.max(...[]) // -InfinityMath.min() // Infinity Math.min(...[]) // Infinity...

【zookeeper特点和集群架构】

文章目录 1. Zookeeper介绍2、ZooKeeper数据结构3、Zookeeper集群架构 1. Zookeeper介绍 ZooKeeper 是一个开源的分布式协调框架&#xff0c;是Apache Hadoop 的一个子项目&#xff0c;主要用来解决分 布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容易…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...