《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
📋 博主简介
- 💖 作者简介:大家好,我是wux_labs。😜
热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。
通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP)、TiDB数据库认证SQL开发专家(PCSD)认证。
通过了微软Azure开发人员、Azure数据工程师、Azure解决方案架构师专家认证。
对大数据技术栈Hadoop、Hive、Spark、Kafka等有深入研究,对Databricks的使用有丰富的经验。- 📝 个人主页:wux_labs,如果您对我还算满意,请关注一下吧~🔥
- 📝 个人社区:数据科学社区,如果您是数据科学爱好者,一起来交流吧~🔥
- 🎉 请支持我:欢迎大家 点赞👍+收藏⭐️+吐槽📝,您的支持是我持续创作的动力~🔥
《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
- 《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
- 前言
- 数学计算库NumPy介绍
- 多维数组对象ndarray
- 数组的访问
- 结束语
《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
前言
大家好!今天为大家分享的是《PySpark大数据分析实战》第3章第2节的内容:NumPy介绍ndarray介绍。
图书在:当当、京东、机械工业出版社以及各大书店有售!
数学计算库NumPy介绍
NumPy(Numerical Python)是Python中科学计算的基础包,是用于科学计算和数值分析的一个重要库。它提供了多维数组对象(ndarray),各种派生对象,以及用于数组快速操作的通用函数、线性代数、傅里叶变换、随机数生成等功能,是Python科学计算中必不可少的库。要在项目中使用NumPy,需要在Python环境中安装NumPy,命令如下:
$ pip install numpy
在使用时需要在Python脚本中导入numpy,以及其他必要的包,代码如下:
import numpy as np
import random
import time
多维数组对象ndarray
NumPy包的核心是ndarray对象,它封装了Python原生的相同数据类型的N维数组。ndarray是NumPy中用于存储和处理数据的核心数据结构,支持向量化计算和广播等操作。为了保证其性能优良,其中有许多操作都是代码在本地进行编译后执行的。
创建一个ndarray对象就和创建Python本地list对象一样简单,在NumPy中创建一维数组可以使用numpy.array()函数,这个函数可以接受一个集合对象,如列表或元组,将其转换为一维数组。下面的案例中创建了一个一维数组,代码如下:
ary1 = np.array([1,2,3,4,5,6,7,8,9])
NumPy专门针对ndarray的操作和运算进行了设计,数组的存储效率和输入输出性能远优于Python中的集合,数组越大,NumPy的优势就越明显。下面的案例中,创建了一个包含1亿个随机数的集合,分别用本地集合对象和ndarray对象对元素求和,比较两种方式的耗时,代码如下:
lst1 = []
for i in range(100000000):lst1.append(random.random())# 使用Python原生list进行运算
t1 = time.time()
sum1 = sum(lst1)
t2 = time.time()# 使用ndarray进行运算
ary2 = np.array(lst1)
t3 = time.time()
sum2 = np.sum(ary2)
t4 = time.time()# 考察两种方式的处理时间
print(t2 - t1, '---', t4 - t3)
执行代码,输出结果如下:
0.9900028705596924 --- 0.13501548767089844
可以看到,ndarray的计算速度快很多。相对于Python中的集合,ndarray有一些优势:
- ndarray存储的是相同类型的数据,在内存中是连续存储的。
- ndarray支持并行化运算。
- NumPy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,效率远高于Python代码。
在NumPy中创建一个N维数组也是使用numpy.array()函数,在下面的案例中创建了一个二维数组,代码如下:
ary3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
数组的访问
ndarray对象的元素可以通过索引、切片、迭代等方式进行访问和修改,这和Python本地集合的访问方式类似。在下面的案例中,分别通过索引、切片等方式访问元素,代码如下:
print("通过索引获取元素:", ary1[2])
print("通过切片获取元素:", ary1[2:7])
print("对元素进行迭代:", [x * 2 for x in ary1])
执行代码,输出结果如下:
通过索引获取元素: 3
通过切片获取元素: [3 4 5 6 7]
对元素进行迭代: [2, 4, 6, 8, 10, 12, 14, 16, 18]
结束语
好了,感谢大家的关注,今天就分享到这里了,更多详细内容,请阅读原书或持续关注专栏。
相关文章:

《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
📋 博主简介 💖 作者简介:大家好,我是wux_labs。😜 热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP…...

图解LRU缓存
图解LRU缓存 OJ链接 介绍 LRU 缓存机制可以通过哈希表辅以双向链表实现,我们用一个哈希表和一个双向链表维护所有在缓存中的键值对。 双向链表按照被使用的顺序存储了这些键值对,靠近尾部的键值对是最近使用的,而靠近头部的键值对是最久未…...
FFmpeg常见命令行
1、ffmpeg命令行 视频生成图片 ffmpeg -i test.mp4 -r 25 -f image2 data/image%3d.jpg这个命令行使用FFmpeg工具将视频文件(test.mp4)转换为一系列图像文件。 让我们逐个解释每个参数的含义: -i test.mp4: 指定输入文件为test.mp4。-i是F…...

智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MA…...

《C++避坑神器·二十五》简单搞懂json文件的读写之遍历json文件读写
json.hpp库放在文章末尾 1、遍历json文件读写 (1)插入新键值对到json之情形1 原来json文件如下所示: {"Connection": {"IpAddress": "192.168.20.1","Rock": 0,"Solt": 1}, "Data…...

使用 fixture 机制重构 appium_helloworld
一、前置说明 在 pytest 基础讲解 章节,介绍了 pytest 的特性和基本用法,现在我们可以使用 pytest 的一些机制,来重构 appium_helloworld 。 appium_helloworld 链接: 编写第一个APP自动化脚本 appium_helloworld ,将脚本跑起来 代码目录结构: pytest.ini 设置: [pyt…...

基于python的excel检查和读写软件
软件版本:python3.6 窗口和界面gui代码: class mygui:def _init_(self):passdef run(self):root Tkinter.Tk()root.title(ExcelRun)max_w, max_h root.maxsize()root.geometry(f500x500{int((max_w - 500) / 2)}{int((max_h - 300) / 2)}) # 居中显示…...

Podman配置mongodb
文章目录 查询镜像拉取镜像查看镜像运行容器创建root用户 查询镜像 podman search mongo拉取镜像 podman pull docker.io/library/mongo查看镜像 podman images运行容器 podman run -d -p 27017:27017 --namemongodb-test docker.io/library/mongo创建root用户 podman exe…...

java实现矩阵谱峰搜索算法
矩阵谱峰搜索算法,也称为矩阵谱峰查找算法,是一种用于搜索二维矩阵中谱峰的方法。谱峰是指在矩阵中的一个元素,它比其上下左右四个相邻元素都大或相等。 该算法的基本思想是从矩阵的中间列开始,找到该列中的最大元素,…...

Jenkins的特殊操作定时自动执行任务以及测试报告调优
java -Dhudson.model.DirectoryBrowserSupport.CSP -jar Jenkins.war 测试报告 不美丽 执行上面的代码 重启jenkins 就好了...

【Grafana】Grafana匿名访问以及与LDAP连接
上一篇文章利用Docker快速部署了Grafana用来展示Zabbix得监控数据,但还需要给用户去创建账号允许他们登录后才能看展示得数据,那有什么办法让非管理员更方便得去访问Grafana呢?下面介绍两个比较方便实现的: 在开始设置前ÿ…...

elasticsearch-py 8.x的一些优势
早在 2022 年 2 月,当 Elasticsearch 8.0 发布时,Python 客户端也发布了 8.0 版本。它是对 7.x 客户端的部分重写,并带有许多不错的功能(如下所述),但也带有弃用警告和重大更改。今天,客户端的 7.17 版本仍然相对流行,每月下载量超过 100 万次,占 8.x 下载量的 ~50…...

RK3588平台开发系列讲解(AI 篇)RKNN 数据结构详解
文章目录 一、rknn_sdk_version二、rknn_input_output_num三、rknn_tensor_attr四、rknn_perf_detail五、rknn_perf_run六、rknn_mem_size七、rknn_tensor_mem八、rknn_input九、rknn_output沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要讲解 RKNN 相关的数…...

2023版本QT学习记录 -6- UDP通信之UDP接收端
———————UDP接收端——————— 🎄动图演示 🎄发送端通信步骤思维导图 🎄添加组件 QT core gui network🎄添加头文件 #include "qudpsocket.h"🎄创建接收对象 QUdpSocket *recvsocket;&…...

C预处理 | pragma详解
欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab,机器人运动控制、多机器人协作,智能优化算法,滤波估计、多传感器信息融合,机器学习,人工智能等相关领域的知识和…...

轻松搭建知识付费小程序:让知识传播更便捷
明理信息科技saas知识付费平台 在当今数字化时代,知识付费已经成为一种趋势,越来越多的人愿意为有价值的知识付费。然而,公共知识付费平台虽然内容丰富,但难以满足个人或企业个性化的需求和品牌打造。同时,开发和维护…...

沉浸式go-cache源码阅读!
大家好,我是豆小匠。 这期来阅读go-cache的源码,了解本地缓存的实现方式,同时掌握一些阅读源码的技巧~ 1. 源码获取 git clone https://github.com/patrickmn/go-cache.git用Goland打开可以看到真正实现功能的也就两个go文件,ca…...

伪协议和反序列化 [ZJCTF 2019]NiZhuanSiWei
打开题目 代码审计 第一层绕过 if(isset($text)&&(file_get_contents($text,r)"welcome to the zjctf")){ echo "<br><h1>".file_get_contents($text,r)."</h1></br>"; 要求我们get传参的text内容必须为w…...

性能优化之资源优化
性能优化之资源优化 资源优化性能关键检测流程。浅析一下基于Unity3D 美术规则约束一、模型层面二、贴图层面三、动画层面四、声音层面:(音频通用设置)五、UI层面: 题外点:诚然在优化中,美术占比是很重要的…...
ChatGPT免费 | 8个免费使用GPT-4的方法
这篇文章为寻找免费使用GPT-4技术的读者提供了一份实用的指南。 每个推荐的平台都包括了简要的描述和链接,方便读者直接访问。 以下是根据你提供的内容,稍作整理的文章结构: 1. HuggingFace 描述: 提供GPT-4等多种语言模型的平台。 如何使用:…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...

UE5 音效系统
一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类,将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix,将上述三个类翻入其中,通过它管理每个音乐…...
无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技
无需布线的革命:电力载波技术赋能楼宇自控系统 在楼宇自动化领域,传统控制系统依赖复杂的专用通信线路,不仅施工成本高昂,后期维护和扩展也极为不便。电力载波技术(PLC)的突破性应用,彻底改变了…...

【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...

Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...