当前位置: 首页 > news >正文

Scikit-Learn线性回归(二)

Scikit-Learn线性回归二:多项式回归

    • 1、多项式回归
    • 2、多项式回归的原理
    • 3、Scikit-Learn多项式回归
      • 3.1、Scikit-Learn多项式回归API



1、多项式回归


线性回归研究的是一个自变量与一个因变量之间的回归问题。在实际应用中,并不是所有的情景都符合线性关系,大多数情况都是非线性的

例如,二阶曲线、三阶曲线等。这种该如何处理呢?

令人意想不到的是,其实你也可以用线性模型来拟合非线性数据。一个简单的方法就是为每个特征的幂次方添加为一个新特征,然后在这个拓展过的特征集上训练线性模型。这种方法被称为多项式回归

多项式回归的基本思想是:以线性回归为基础,拓展数据集特征空间的维度,且被拓展的特征空间维度上的数据是给定数据集相关项的多项式项

多选线性回归需要使用Scikit-Learn的PolynomialFeatures对X进行处理,它会将X转化为多个特征,分别对应x0、x1、x2、…

例如,我们使用二次方程y=ax2+bx+c生成一些非线性数据,Scikit-Learn预处理模块中的PolynomialFeatures类提供了这种支持:将训练数据(只有一个特征:x)进行转换,将每个特征的幂次方(此处为平方,即x2)作为新特征加入训练集,在新的数据集上进行线性拟合

PolynomialFeatures会在给定的多项式阶数下,添加所有的特征组合。例如,有两个特征x和y,阶数degree=3,PolynomialFeatures不只会添加特征x2、x3、y2和y3,还会添加组合xy、x2y及xy2。要小心特征组合的数量爆炸!

2、多项式回归的原理


假设我们样本符合三次曲线:y=ax3+bx2+cx+d,根据线性回归方程定义,我们假设我们的模型函数为: f ( x 3 , x 2 , x 1 ) = a x 3 + b x 2   + c x 1 + d f(x_3,x_2,x_1)=ax_3+bx_2~+cx_1+d f(x3,x

相关文章:

Scikit-Learn线性回归(二)

Scikit-Learn线性回归二:多项式回归 1、多项式回归2、多项式回归的原理3、Scikit-Learn多项式回归3.1、Scikit-Learn多项式回归API1、多项式回归 线性回归研究的是一个自变量与一个因变量之间的回归问题。在实际应用中,并不是所有的情景都符合线性关系,大多数情况都是非线性…...

07 Vue3框架简介

文章目录 一、Vue3简介1. 简介2. 相关网站3. 前端技术对比4. JS前端框架5. Vue核心内容6. 使用方式 二、基础概念1. 创建一个应用2. 变量双向绑定(v-model)3. 条件控制(v-if)4. 数组遍历(v-for)5. 绑定事件…...

前端八股文(js篇)

一.强制类型转换规则 首先需要了解隐式转换所调用的函数。 当程序员显示调用Boolean(value),Number(value),String(value)完成的类型转换,叫做显示类型转换。 当通过new Boolean&…...

windows+ubuntu离线安装翻译软件有道词典

背景: 某些情况下,需要在无法连接互联网的电脑上翻译单词,句子以及段落,就需要能离线安装和翻译的翻译软件,具备一定的词库量,目前找到了《有道词典》。 windows 亲测,无法联网的win10中安装…...

DevC++ easyx实现视口编辑,在超过屏幕大小的地图上画点,与解决刮刮乐bug效果中理解C语言指针的意义

继上篇文案, DevC easyx实现地图拖动,超过屏幕大小的巨大地图的局部显示在屏幕的方法——用悬浮窗的原理来的实现一个视口-CSDN博客 实现了大地图拖动,但是当时野心不止,就想着一气能搓啥就继续搓啥,看着地图移动都搓…...

Kali Linux—借助 SET+MSF 进行网络钓鱼、生成木马、获主机shell、权限提升、远程监控、钓鱼邮件等完整渗透测试(一)

社会工程学—世界头号黑客凯文米特尼克在《欺骗的艺术》中曾提到,这是一种通过对受害者心理弱点、本能反应、好奇心、信任、贪婪等心理陷阱进行诸如欺骗、伤害等危害手段。 SET最常用的攻击方法有:用恶意附件对目标进行 E-mail 钓鱼攻击、Java Applet攻…...

时间与时间戳转换及android和ios对时间识别的区别

注意: "2021-05-01 12:53:59.55" 时间对象在 ios 中会出现 NaN-NaN1-NaN 需要将对象格式化为:"2021/05/01 12:53:59.55" 可同时兼容 android 和 ios。 //将某时间转时间戳 /* var time new Date("2021-05-01 12:53:59.55&qu…...

飞天使-k8s知识点7-kubernetes升级

文章目录 验证新版本有没有问题需要安装的版本微微 1.20.6.0kubeadm upgrade plan 验证新版本有没有问题 查看可用版本的包 现有的状态 查看版本 yum list kubeadm --showduplicates |grep 1.20 yum list kubelet --showduplicates |grep 1.20 yum list kubectl --showduplic…...

【Unity游戏制作】游戏模型导入之前需要注意的三个基本点

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…...

三列布局 css

实现如下图的三列布局: .box {width:1400px;margin:0 auto;padding-bottom:40px;> .left {float:left;width:180px;margin-top:100px;text-align:center;}> .center {float:left;margin-top:100px;margin-left:130px;item-box {float:left;text-align:left;…...

Android开发之生命周期(App、Activity)

在Android开发中,应用程序(App)和活动(Activity)的生命周期是非常重要的概念。它们各自都有一系列的生命周期方法,这些方法会在特定的时刻被系统自动调用,以便于开发者对应用或活动进行相应的操…...

利用html2Canvas将表格下载为html

给到我的需求是点击按钮时请求后端接口,根据后端返回的数据,生成表格,并将表格的内容直接下载为html,如下图。 平常做的下载都是后端返回二进制流,这次前端做下载那就必须把页面先画出来,因为下载下来的表格在页面上是不显示的&a…...

《Git快速入门》Git分支

1.master、origin、origin/master 区别 首先搞懂git分支的一些名称区别: master : Git 的默认分支名字。它并不是一个特殊分支、跟其它分支完全没有区别。 之所以几乎每一个仓库都有 master 分支,是因为 git init 命令默认创建它&#xff0c…...

HarmonyOS应用性能与功耗云测试

性能测试 性能测试主要验证HarmonyOS应用在华为真机设备上运行的性能问题,包括启动时长、界面显示、CPU占用和内存占用。具体性能测试项的详细说明请参考性能测试标准。 性能测试支持Phone和TV设备,包格式包括Hap/App。 前提条件 已注册华为开发者帐号&a…...

【AI】人工智能本地环境集成安装

目录 1、基础安装 1.1 GPU安装 1.1.1 GPU版本支持 1.1.2 下载CUDA 1.1.3安装CUDA 1.1.4配置环境变量 1.1.5检测CUDA是否安装成功 1.2 CUDNN安装 1.2.1 下载CUDNN 1.2.2 添加配置 1.2.3验证结果 2、pytorch安装...

主流级显卡的新选择,Sparkle(撼与科技)Intel Arc A750兽人体验分享

▼前言 对于玩家而言,英特尔独显的出现不仅打破了NVIDIA与AMD双雄天下的局面,而且旗下的Arc A系列显卡还拥有不俗的做工性能以及颇具优势的价格,无论是升级或者是装新机都非常合适。如果要在Arc A系列当中选一个性能不俗,能够满足…...

BI 商业数据分析能够给企业带来什么改变?

时下,随着中国企业数据整合应用的意识不断提高,BI 商业数据分析的应用驶入飞速发展的“快车道”。BI 商业智能利用数据分析技术与业务场景联系起来,通过一系列思维方法、指标体系及工具模型来支持市场分析、产品优化、客户洞察,从…...

模式识别与机器学习-特征选择和提取

模式识别与机器学习-特征选择和提取 特征选择一些距离测度公式独立特征的选择准则一般特征的散布矩阵准则 离散K-L变换 谨以此博客作为复习期间的记录。 常见分类问题的流程,数据预处理和特征选择提取时机器学习环节中最重要的两个流程。这两个环节直接决定了最终性…...

嵌入式——RTC闹钟Alarm

开发流程 配置RTC时钟设置RTC闹钟配置RTC闹钟中断实现中断函数RTC闹钟初始化 // 闹钟外部中断 exti_flag_clear(EXTI_17); exti_init(EXTI_17,EXTI_INTERRUPT,EXTI_TRIG_RISING);// 重置闹钟 rtc_alarm_disable(RTC_ALARM0);rtc_alarm_struct ras; ras.alarm_mask = RTC_ALARM…...

【linux】线程控制

线程控制 1.创建线程2.线程终止3.线程等待4.线程分离5.对线程的简单封装 喜欢的点赞,收藏,关注一下把! 进程概念上篇文章已经讲完了,下面我们就来说说线程控制。 我们使用的接口是pthread线程库,也叫做原生线程库给我…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...