当前位置: 首页 > news >正文

第九部分 图论

目录

相关概念 

握手定理

例1

图的度数列

无向图的连通性

无向图的连通度

 例2

例3

有向图D如图所示,求 A, A2, A3, A4,并回答诸问题:


中间有几章这里没有写,感兴趣可以自己去学,组合数学跟高中差不多,这里也没写了,绝不是因为作者懒!

定义9 .1 无向图 G = < V , E >, 其中
(1) V ≠ ∅ 为顶点集,元素称为 顶点
(2) E V & V 的多重集,其元素称为无向边,简称

G = <V,E>为无向图

V = { v 1, v2, v3,v4,v5}
E = {( v 1 , v 1 ), ( v 1 , v 2 ), ( v 2 , v 3 ), ( v 2 , v 3 ), ( v 2 , v 5 ), ( v 1 , v 5 ), ( v 4 , v 5 )}
定义9 .2 有向图 D =< V , E >, 只需注意 E V × V 的多重子集
相关概念 
1.
① 可用 G 泛指图(无向的或有向的)
V ( G ), E ( G ), V ( D ), E ( D )
n 阶图
2. 有限图
3. n 阶零图与平凡图
4. 空图 ——
5. e k 表示无向边或有向边
6. 顶点与边的关联关系
① 关联、关联次数
② 环
③ 孤立点
7. 顶点之间的相邻与邻接关系
8. 邻域与关联集
v V ( G ) ( G 为无向图 )
v的邻域            N(v)={u|u∈V(G)(u,v)∈E(G)u≠v}
v的闭邻域        \bar{N}(v)=N(v)∪{v}
v的关联集        I(v)={e|e∈E ( G ) e v 关联 }
v V ( D ) ( D 为有向图 )
v的后继元集        I^{_{D}^{+}}(v)={u|u∈V(D) ∧<v,u>∈E(D) u≠v}
v的先驱元集        I_{D}^{-} (v)= {u|u∈V(D) ∧<u,v>∈E(D) u≠v}
v的邻域                N_{D}(v)=I^{_{D}^{+}}(v)∪I_{D}^{-}(v)
v的闭邻域            \bar{N}(v)=N_{D}(v)∪{v}
9. 标定图与非标定图
10. 基图
定义9 .3
(1) 无向图中的平行边及重数
(2) 有向图中的平行边及重数        注意方向性
(3) 多重图
(4) 简单图
定义9 .4
(1) G =< V , E > 为无向图 , v V , d ( v )—— v 的度数 , 简称度
(2) D =< V , E > 为有向图
v V
d + ( v )—— v 的出度
d ( v )—— v 的入度
d ( v )—— v 的度或度数
(3)
( G )最大度
δ ( G )最小度
(4)
+ ( D )最大出度
δ + ( D )最小出度
( D )最大入度
δ ( D )最小入度
(5) 奇顶点度与偶度顶点
握手定理

定理9.1 G=<V,E>为任意无向图,V={v1,v2,,vn}, |E|=m,

G 中每条边 ( 包括环 ) 均有两个端点,所以在计算 G 中各顶点 度数之和时,每条边均提供 2 度, m 条边共提供 2 m

定理9.2 D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m,  

总度数为边数的两倍,入度和出度都等于边数

1
无向图 G 16 条边, 3 4 度顶点, 4 3 度顶点,其余 顶点度数均小于 3 ,问 G 的阶数 n 为几?
本题的关键是应用握手定理
3 度与 4 度顶点外
还有 x 个顶点 v 1 , v 2 , …, v x
d ( v i ) 2 i =1, 2, …, x
于是得不等式
32 24+2 x
x 4
阶数 n 4+4+3=11
图的度数列
V ={ v 1 , v 2 , …, v n } 为无向图 G 的顶点集,称 d ( v 1 ), d ( v 2 ), …, d ( v n ) G 度数列
V ={ v 1 , v 2 , …, v n } 为有向图 D 的顶点集
D 度数列 d ( v 1 ), d ( v 2 ), …, d ( v n )
D 出度列 d + ( v 1 ), d + ( v 2 ), …, d + ( v n )
D 入度列 d ( v 1 ), d ( v 2 ), …, d ( v n )
非负整数列 d =( d 1 , d 2 , …, d n ) 可图化的 ,是 可简单图化
度数列=入度列+出度列,对应元素

度数列={3,2,3,2}

出度列={2,1,2,1}

则求入读列

{1,1,1,1}

定义9 .5 G 1 =< V 1 , E 1 >, G 2 =< V 2 , E 2 > 为两个无向图 ( 两个有向 ) ,若存在双射函数 f : V 1 V 2 , 对于 v i , v j V 1 , ( v i , v j ) E 1 当且仅当 ( f ( v i ), f ( v j )) E 2 < v i , v j > E 1 当且仅当 < f ( v i ), f ( v j )> E 2 ) 并且 , ( v i , v j ) < v i , v j > )与 ( f ( v i ), f ( v j )) < f ( v i ), f ( v j )> )的重数相 同,则称 G 1 G 2 同构 的,记作 G 1 G 2
图之间的同构关系具有自反性、对称性和传递性
能找到多条同构的必要条件,但它们全不是充分条件:
① 边数相同,顶点数相同
② 度数列相同
③ 对应顶点的关联集及邻域的元素个数相同
若破坏必要条件,则两图不同构
判断两个图同构是个难题

定义9.6

(1) n ( n 1) 阶无向完全图 —— 每个顶点与其余顶点均相邻的 无向简单图,记作 K n
简单性质:
边数
m = n ( n   1) /2
∆ = δ = n 1
(2) n ( n 1) 有向完全图 —— 每对顶点之间均有两条方向相 反的有向边的有向简单图
简单性质:
m = n ( n 1)
∆ = δ = 2( n 1)
+ = δ + = n 1
(3) n ( n 1) 竞赛图 —— 基图为 K n 的有向简单图
简单性质:
边数
m = n ( n 2 1)
∆ = δ = n 1

定义9.7 n k正则图——=δ=k 的无向简单图

简单性质:边数(由握手定理得)

m=nk/2

定义9 .8 G =< V , E >, G =< V , E >
(1) G ′⊆ G —— G G 子图 G G 母图
(2) G ′⊆ G V = V ,则称 G G 生成子图
(3) V ′⊂ V E ′⊂ E ,称 G G 真子图
(4) V V ′⊂ V V ′≠∅ )的 导出子图 ,记作 G [ V ]
(5) E E ′⊂ E E ′≠∅ )的 导出子图 ,记作 G [ E ]
定义9 .9 G =< V , E > n 阶无向简单图,以 V 为顶点集,以 所有使 G 成为完全图 K n 的添加边组成的集合为边集的图, 称为 G 补图 ,记作
GG , 则称G自补图.
定义9 .10  给定图 G =< V , E > (无向或有向的), G 顶点与 边的交替序列 Γ = v 0 e 1 v 1 e 2 e l v l v i 1 , v i e i 的端点
(1) 通路与回路: Γ 通路 ;若 v 0 = v l Γ 回路 l 回路长
(2) 简单通路与回路:所有边各异, Γ 简单通路 ,又若 v 0 = v l Γ 简单回路
(3) 初级通路 ( 路径 ) 与初级回路 ( ) Γ 中所有顶点各异,则 Γ 初级通路 ( 路径 ) ,又若除 v 0 = v l ,所有的顶点各不相 同且所有的边各异,则称 Γ 初级回路 ( )
(4) 复杂通路与回路:有边重复出现
定理9 .3  n 阶图 G 中,若从顶点 v i v j v i v j )存在通路, 则从 v i v j 存在长度小于或等于 n 1 的通路
定理9 .4  在一个 n 阶图 G 中,若存在 v i 到自身的回路,则一 定存在 v i 到自身长度小于或等于 n 的回路
无向图的连通性
(1) 顶点之间的连通关系: G =< V , E > 为无向图
① 若 v i v j 之间有通路,则 v i v j
V 上的等价关系 R ={< u , v >| u , v V u v }
(2) G 的连通性与连通分支
① 若 u , v V u v ,则称 G 连通
V / R ={ V 1 , V 2 ,…, V k } ,称 G [ V 1 ], G [ V 2 ], …, G [ V k ] 连通分 ,其个数 p ( G )= k ( k 1)
k =1 G 连通
(3) 短程线与距离
u v 之间的 短程线 u v u v 之间长度最短的通路
u v 之间的 距离 d ( u , v )—— 短程线的长度
d ( u , v ) 的性质:
d ( u , v ) 0, u v d ( u , v )=
d ( u , v )= d ( v , u )
d ( u , v )+ d ( v , w ) d ( u , w )
无向图的连通度
删除顶点及删除边
G v —— G 中将 v 及关联的边去掉
G V —— G 中删除 V 中所有的顶点
G e —— e G 中去掉
G E —— 删除 E 中所有边
点割集与边割集
点割集与割点

定义9.11 G=<V,E>, V′⊂V

V 点割集        —— p ( G V )> p ( G ) 且有极小性
v 割点              ——{ v } 为点割集
定义9 .12  G =< V , E >, E ′⊆ E
E 边割集         —— p ( G E )> p ( G ) 且有极小性
e 割边 (桥)   ——{ e } 为边割集

点割集和边割集的两个要求

删去集合里的所有边或点,会增加连通分支

删去集合中的子集不会增加连通分支

 例2

点割集        {v5},{v6},{v1,v4}

割点            v5,v6

边割集        {e7},{e8},{e1,e2},{e1,e4,e6},{e2,e3,e9},{e1,e3,e9},{e2,e4,e6},{e3,e4,e5},{e1,e3,e5,e6},{e2,e4,e5,e9},{e1,e4,e5,e9},{e2,e3,e5,e9}

割边(桥)      e7,e8

定义9 .13  D =< V , E > 为有向图
v i v j v i 可达 v j —— v i v j 有通路
v i v j v i v j 相互可达)
性质
具有自反性 ( v i v i ) 、传递性
具有自反性、对称性、传递性
v i v j 的短程线与距离
类似于无向图中,只需注意距离表示法的不同
( 无向图中 d ( v i , v j ) ,有向图中 d < v i , v j >) d < v i , v j > 无对称性

 定义9.14 D=<V,E>为有向图

D 弱连通 ( 连通 )—— 基图为无向连通图
D 单向连通 —— v i , v j V v i v j v j v i
D 强连通 —— v i , v j V v i v j
易知,强连通 单向连通 弱连通
判别法
定理9 .4  D 强连通当且仅当 D 中存在经过每个顶点至少一次 的回路
定理9 .5  D 单向连通当且仅当 D 中存在经过每个顶点至少一 次的通路
定义9.15   G =< V , E > 为一个无向图,若能将 V 分成 V 1 V 2 ( V 1 V 2 = V V 1 V 2 = ) ,使得 G 中的每条边的两个端点都是 一个属于 V 1 ,另一个属于 V 2 ,则称 G 二部图 ( 或称 二分
偶图 ) ,称 V 1 V 2 互补顶点子集 ,常将二部图 G 记为 < V 1 , V 2 , E > 又若 G 是简单二部图, V 1 中每个顶点均与 V 2 中所有的顶点相 则称 G 完全二部图 ,记为 K r , s ,其中 r =| V 1 | s =| V 2 |
注意, n 阶零图为二部图
完全二部图V1集合每个点都与V2集合中每个点相连

定理9.6 无向图G=<V,E>二部图当且仅当G中无奇圈 

定义9 .16  无向图 G =< V , E > | V |= n | E |= m ,令 m ij v i e j 的关联次数,称 ( m ij ) n × m G 关联矩阵 ,记为 M ( G )
定义9 .17  有向图 D =< V , E > ,令 则称 ( m ij ) n × m D 关联矩阵 ,记为 M ( D )

 

定义9 .18  设有向图 D =< V , E >, V ={ v 1 , v 2 , …, v n }, E ={ e 1 , e 2 , …, e m }, 令为顶点 v i 邻接到顶点 v j 边的条数,称为 D 邻接矩 ,记作 A ( D ) ,或简记为 A

定理9.7 A为有向图 D 的邻接矩阵,V={v1, v2, …, vn}顶点集,则 A l 次幂 Al l1)中元素

a^{_{ij}^{(l)}}Dvi vj 长度为 l 的通路数,其中a^{_{ii}^{(l)}}vi 到自身长度为 l 的回路数,而D中长度为 l 的通路总数,D 中长度为 l 的回路总数

例3
有向图D如图所示,求 A, A2, A3, A4,并回答诸问题:
(1) D 中长度为 1, 2, 3, 4 的通路各有多少条?其中回路分别为多 少条?
(2) D 中长度小于或等于 4 的通路为多少条?其中有多少条回路?

 

(1)
D 中长度为 1 的通路为 8 条,其中有 1 条是回路
D 中长度为 2 的通路为 11 条,其中有 3 条是回路
D 中长度为 3 4 的通路分别为 14 17 条,回路分别 1 3
(2)
D 中长度小于等于 4 的通路为 50 条,其中有 8 条是回路
下标(i,i)的数的和为回路总数,(i,j)的数的和为通路总数

 定义9.19 D=<V,E>为有向图. V={v1, v2, …, vn},

(pij)n×n D的可达矩阵,记作P(D),简记为由于vi Vvi vi ,所以P(D)主对角线上的元素全为1

由定义不难看出, D 强连通当且仅当P(D)为全1矩阵

下图所示有向图 D 的可达矩阵为

相关文章:

第九部分 图论

目录 例 相关概念 握手定理 例1 图的度数列 例 无向图的连通性 无向图的连通度 例2 例3 有向图D如图所示&#xff0c;求 A, A2, A3, A4&#xff0c;并回答诸问题&#xff1a; 中间有几章这里没有写&#xff0c;感兴趣可以自己去学&#xff0c;组合数学跟高中差不多&#xff0c…...

如何用java实现对java虚拟机的性能监控?

要使用Java实现对Java虚拟机&#xff08;JVM&#xff09;的性能监控&#xff0c;可以使用Java Management Extensions&#xff08;JMX&#xff09;来获取和监控JVM的各种指标。以下是一个简单的示例代码&#xff0c;演示如何使用JMX监控JVM的内存使用情况&#xff1a; import …...

电路设计(7)——窗口比较器的multism仿真

1.功能设计 构建一个窗口比较器的电路&#xff0c;在输入电压大于3.5v&#xff0c;小于0.8v时&#xff0c;蜂鸣器报警&#xff0c;输入电压在0.8v到3.5v之间时&#xff0c;不报警。 整体电路如下&#xff1a; 2.设计思路 在输入端&#xff0c;采取电阻分压的方式&#xff0c;输…...

前端已死?探讨人工智能与低代码对前端的影响

文章目录 每日一句正能量前言前端行业究竟是好是坏&#xff1f;数字化转型的当下前端工程师该何去何从&#xff1f; 想要入行前端先认清这三个事实 后记 每日一句正能量 人的结构就是相互支撑&#xff0c;众人的事业需要每个人的参与。 前言 随着人工智能和低代码的崛起&#…...

树莓派,opencv,Picamera2利用舵机云台追踪人脸(PID控制)

一、需要准备的硬件 Raspiberry Pi 4b两个SG90 180度舵机&#xff08;注意舵机的角度&#xff0c;最好是180度且带限位的&#xff0c;切勿选360度舵机&#xff09;二自由度舵机云台&#xff08;如下图&#xff09;Raspiberry CSI 摄像头 组装后的效果&#xff1a; 二、项目目…...

uniapp中推出当前微信小程序

uni.exitMiniProgram() 通过代码直接退出当前小程序 uni.exitMiniProgram({success: function() {console.log(退出小程序成功);},fail: function(err) {console.log(退出小程序失败, err);} })...

AndroidStudio无法新建aidl文件解决办法

我用的 AS 版本是 Android Studio Giraffe | 2022.3.1 Build #AI-223.8836.35.2231.10406996, built on June 29, 2023 右键新建 aidl 文件&#xff0c; 提示 (AIDL File)Requires setting the buildFeatures.aidl to true in the build file 解决办法 修改 app 的 build.…...

java爬虫(jsoup)如何设置HTTP代理ip爬数据

目录 前言 什么是HTTP代理IP 使用Jsoup设置HTTP代理IP的步骤 1. 导入Jsoup依赖 2. 创建HttpProxy类 3. 设置代理服务器 4. 使用Jsoup进行爬取 结论 前言 在Java中使用Jsoup进行网络爬虫操作时&#xff0c;有时需要使用HTTP代理IP来爬取数据。本文将介绍如何使用Jsoup设…...

ZooKeeper Client API 安装及使用指北

下载 wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.4-beta/zookeeper-3.5.4-beta.tar.gz解压 tar -zxf zookeeper-3.5.4-beta.tar.gz安装 cd zookeeper-3.5.4-beta/src/c/ ./configure make sudo make install到 make 这一步大概率会出现报错&#xff1a;…...

本机ping不通虚拟机

windows下finall shell连不上虚拟机了&#xff0c;之前是可以的&#xff0c;然后ping虚拟机&#xff0c;发现也ping不通&#xff0c;随后到处找问题。 在本地部分&#xff0c;控制面板 ——>网络和Internet——>网络连接 &#xff0c; 可以看到 VMnet1和Vmnet8虽然都是已…...

Linux cfdisk命令

Linux cfdisk命令用于磁盘分区。 cfdisk是用来磁盘分区的程序&#xff0c;它十分类似DOS的fdisk&#xff0c;具有互动式操作界面而非传统fdisk的问答式界面&#xff0c;您可以轻易地利用方向键来操控分区操作。 语法 cfdisk [-avz][-c <柱面数目>-h <磁头数目>-…...

实用学习网站和资料

github:https://github.com/GitHubDaily/GitHubDaily Linux操作手册&#xff1a; GitHub - abarrak/linux-sysops-handbook: Essentials of Linux system administration. 从零开始制作一个操作系统&#xff1a; GitHub - ruiers/os-tutorial-cn: 从零开始编写一个操作系统…...

【已解决】c++qt如何制作翻译供程序调用

本博文源于笔者正在编写的工具需要创建翻译文件&#xff0c;恰好将qt如何进行翻译&#xff0c;从零到结果进行读者查阅&#xff0c;并非常推荐读者进行收藏点赞&#xff0c;因为步步都很清晰&#xff0c;堪称胎教式c制作&#xff0c;而且内容还包括如何部署在windows下。堪称值…...

DPDK单步跟踪(3)-如何利用visual studio 2019和visual gdb来单步调试dpdk

准备工作 因为时间的关系&#xff0c;我想到哪说到哪&#xff0c;可能没那么高的完成度。 但其实有心的人&#xff0c;看到这个标题&#xff0c;就关了本文自己能做了。 why和how to build debug version DPDK,见前两篇。这里我们准备开始。 首先&#xff0c;你有一台linux机…...

Python爬虫---解析---BeautifulSoup

BeautifulSoup简称&#xff1a;bs4 作用&#xff1a;解析和提取数据 1. 安装&#xff1a;pip install bs4 或pip install bs4 -i https://pypi.douban.com/simple&#xff08;使用国内镜像下载&#xff09; 注意&#xff1a;需要安装在python解释器相同的位置,例如&#xf…...

Argument list too long when copying files

for i in /path/to/dir/*; do cp "$i" /path/to/other/dir/; done...

configure

configure 配置软件./configure --prefix$PWD/output CCaarch64-linux-gcc --hostaarch64-linux --enable-shared --enable-staticconfig.sub 文件 这个文件用于确定主机系统的类型&#xff0c;并返回与该系统相关的标识符。它包含一系列 shell 函数&#xff0c;用于检测主机…...

HOJ 项目部署-前端定制 默认勾选显示标签、 在线编辑器主题和字号大小修改、增加一言功能 题目AC后礼花绽放

# 项目拉取地址&#xff1a; https://gitee.com/himitzh0730/hoj.git # 切换到hoj-vue目录执行以下命令 #安装依赖 npm install #运行服务 npm run serve #修改代码后构建项目到dist文件夹&#xff0c;到服务器docker-compose.yml中修改hoj-frontend文件映射即可 npm run build…...

Scikit-Learn线性回归(二)

Scikit-Learn线性回归二:多项式回归 1、多项式回归2、多项式回归的原理3、Scikit-Learn多项式回归3.1、Scikit-Learn多项式回归API1、多项式回归 线性回归研究的是一个自变量与一个因变量之间的回归问题。在实际应用中,并不是所有的情景都符合线性关系,大多数情况都是非线性…...

07 Vue3框架简介

文章目录 一、Vue3简介1. 简介2. 相关网站3. 前端技术对比4. JS前端框架5. Vue核心内容6. 使用方式 二、基础概念1. 创建一个应用2. 变量双向绑定&#xff08;v-model&#xff09;3. 条件控制&#xff08;v-if&#xff09;4. 数组遍历&#xff08;v-for&#xff09;5. 绑定事件…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...