统计直线上2个点的分布占比
直线上有6个格子,向格子里扔2个石子,共有5种可能。
| 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 |
第1种两个石子是连着的,共有5个
| 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 |
第2种两个石子间隔1个格子,有4个
| 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 |
两个石子间距为2,有3个
| 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 |
两个石子间距为3,有2个
| 1 | 0 | 0 | 0 | 0 | 1 |
两个石子间距4,只有1个。一共只有这15种可能。
| 15 | % |
| 5 | 0.333333 |
| 4 | 0.266667 |
| 3 | 0.2 |
| 2 | 0.133333 |
| 1 | 0.066667 |
所以两个石子间距越大,发生的概率越小。所以随机的向这6个格子里扔2个石子,有1/3的概率两个石子是连着的。
( A, B )---1*30*2---( 1, 0 )( 0, 1 )
做一个网络分类A和B,让B全是0,A训练集只有6张图片。
| A | 迭代次数 | ||||||
| 1 | 1 | 0 | 0 | 0 | 0 | 58609.84 |
首先分类1,1,0,0,0,0,得到平均收敛迭代次数为58609,因为差值结构的行可以按照1-2-3-4-5-6-1的顺序变换,所以
| 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 |
第一组5个结构的迭代次数都相同。
用同样的办法测量第2组和第3组
| A | 迭代次数 | ||||||
| 1 | 1 | 0 | 0 | 0 | 0 | 58609.84 | |
| 1 | 0 | 1 | 0 | 0 | 0 | 61017.26 | |
| 1 | 0 | 0 | 1 | 0 | 0 | 63229.15 |
得到表格,很明显间距是0,1,2的3组的迭代次数是逐渐增加的。因为间距是0,1,2的3组发生的概率是由大到小的,所以这里的迭代次数与结构A的发生概率成反比。发生概率越大,迭代次数越小。越容易被随机到,越容易收敛。
| 1 | 1 | 0 | 0 | 0 | 0 | ||
| 1 | 0 | 0 | 0 | 0 | 1 |
但在神经网络中因为差值结构的循环节长度是6,所以间距为0和间距为4的迭代次数是一样的。
| 1 | 0 | 1 | 0 | 0 | 0 | ||
| 1 | 0 | 0 | 0 | 1 | 0 |
同样间距为1和间距为3的迭代次数也是相同的。
所以只有3组不同的迭代次数。
所以网络
( A, B )---1*30*2---( 1, 0 )( 0, 1 )
的收敛过程等价于随机的向直线上的6个格子里扔石子,有的结构更容易收敛是因为这个结构在搜索范围内天然的占比更大。
随机验算,随机扔了500次,1000次
| 组合 | |||||||
| 15 | % | 500 | % | 1000 | % | ||
| 5 | 0.333333 | 172 | 0.344 | 323 | 0.323 | ||
| 4 | 0.266667 | 131 | 0.262 | 276 | 0.276 | ||
| 3 | 0.2 | 94 | 0.188 | 200 | 0.2 | ||
| 2 | 0.133333 | 66 | 0.132 | 137 | 0.137 | ||
| 1 | 0.066667 | 37 | 0.074 | 64 | 0.064 |
相关文章:
统计直线上2个点的分布占比
直线上有6个格子,向格子里扔2个石子,共有5种可能。 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 第1种两个石子是连着的,共有5个 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 …...
uniapp创建/运行/发布项目
1、产生背景----跨平台应用框架 在移动端各大App盛行的时代,App之间的竞争也更加激烈,他们执着于让一个应用可以做多个事情 所以就应运而生了小程序,微信小程序、支付宝小程序、抖音小程序等等基于App本身的内嵌类程序。 但是各大App他不可…...
洛谷 P2367 语文成绩 刷题笔记
P2367 语文成绩 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 差分 令a[i]为b[i]数组的前缀和 a[n]b[1]b[2]b[3].....b[n]; a[n-1]b[1]b[2]b[3].....b[n-1]; 构造差分数组 b[i]a[i]-a[i-1]; 有什么好处 当我们想对a[l]--a[r]范围内所有数据加上一个数x 不必循环 for(i…...
Opencv_CUDA实现推理图像前处理与后处理
Opencv_CUDA实现推理图像前处理与后处理 通过trt 或者 openvino部署深度学习算法时,往往会通过opencv的Mat及算法将图像转换为固定的格式作为输入openvino图像的前后处理后边将在单独的文章中写出今晚空闲搜了一些opencv_cuda的使用方法,在此总结一下前…...
Android.bp 和 Android.mk 的对应关系
参考 Soong 构建系统 Android.mk 转为 Android.bp 没有分支、循环等流程控制的简单的 Android.mk ,可以通过 androidmk 命令转化为 Android.bp source 、lunch 之后执行即可。 androidmk Android.mk > Android.bp对应关系 Android 13 ,build/soon…...
力扣-收集足够苹果的最小花园周长[思维+组合数]
题目链接 题意: 给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| |j| 个苹果。 你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。 给你一个整…...
【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇
文章目录 📝前言🌠什么是位段?🌉 位段的内存分配🌉VS怎么开辟位段空间呢?🌉位段的跨平台问题🌠 位段的应⽤🌠位段使⽤的注意事项🚩总结 📝前言 本…...
基于Hexo+GitHub Pages 的个人博客搭建
基于HexoGitHub Pages 的个人博客搭建 步骤一:安装 Node.js 和 Git步骤二:创建Github Pages 仓库步骤二:安装 Hexo步骤三:创建 Hexo 项目步骤四:配置 Hexo步骤五:创建新文章步骤六:生成静态文件…...
7. 结构型模式 - 代理模式
亦称: Proxy 意图 代理模式是一种结构型设计模式, 让你能够提供对象的替代品或其占位符。 代理控制着对于原对象的访问, 并允许在将请求提交给对象前后进行一些处理。 问题 为什么要控制对于某个对象的访问呢? 举个例子ÿ…...
挑战Python100题(6)
100+ Python challenging programming exercises 6 Question 51 Define a class named American and its subclass NewYorker. Hints: Use class Subclass(ParentClass) to define a subclass. 定义一个名为American的类及其子类NewYorker。 提示:使用class Subclass(Paren…...
gin实现登录逻辑,包含cookie,session
users/login.html {{define "users/login.html"}} <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>登录页面</title> </head> <body><form method"post" a…...
云原生Kubernetes:K8S集群版本升级(v1.22.14 - v1.23.14)
目录 一、理论 1.K8S集群升级 2.环境 3.升级集群(v1.23.14) 4.验证集群(v1.23.14) 二、实验 1. 环境 2.升级集群(v1.23.14) 2.验证集群(v1.23.14) 一、理论 1.K8S集群升级 …...
C++面向对象(OOP)编程-位运算详解
本文主要介绍原码、位运算的种类,以及常用的位运算的使用场景。 目录 1 原码、反码、补码 2 有符号和无符号数 3 位运算 4 位运算符使用规则 4.1 逻辑移位和算术移位 4.1.1 逻辑左移和算法左移 4.1.2 逻辑右移和算术右移 4.1.3 总结 4.2 位运算的应用场景 …...
linux运行服务提示报错/usr/bin/java: 没有那个文件或目录
如果是直接从官网下载的jdk解压安装,那么/usr/bin/没有java的软连接,即/usr/bin/java,所以即使在/etc/profile中配置了jdk的环境变量也没用,识别不到。 方法一:用java的执行路径配置/usr/bin/java软连接(优…...
一篇文章教会你数据仓库之详解拉链表怎么做
前言 本文将会谈一谈在数据仓库中拉链表相关的内容,包括它的原理、设计、以及在我们大数据场景下的实现方式。 全文由下面几个部分组成: 先分享一下拉链表的用途、什么是拉链表。通过一些小的使用场景来对拉链表做近一步的阐释,以及拉链表和…...
C/S医院检验LIS系统源码
一、检验科LIS系统概述: LIS系统即实验室信息管理系统。LIS系统能实现临床检验信息化,检验科信息管理自动化。其主要功能是将检验科的实验仪器传出的检验数据经数据分析后,自动生成打印报告,通过网络存储在数据库中ÿ…...
项目应用多级缓存示例
前不久做的一个项目,需要在前端实时展示硬件设备的数据。设备很多,并且每个设备的数据也很多,总之就是数据很多。同时,设备的刷新频率很快,需要每2秒读取一遍数据。 问题来了,我们如何读取数据,…...
音视频技术开发周刊 | 325
每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 AI读心术震撼登顶会!模型翻译脑电波,人类思想被投屏|NeurIPS 2023 在最近举办的NeurIPS大会上,研究人员展示了当代AI更震撼…...
量化服务器 - 后台挂载运行
服务器 - 后台运行 pip3命令被kill 在正常的pip命令后面加上 -no-cache-dir tmux 使用教程 https://codeleading.com/article/40954761108/ 如果你希望在 tmux 中后台执行一个 Python 脚本,你可以按照以下步骤操作: 启动 tmux: tmux这将会创建一个新…...
使用tesla gpu 加速大模型,ffmpeg,unity 和 UE等二三维应用
我们知道tesla gpu 没有显示器接口,那么在windows中怎么使用加速unity ue这种三维编辑器呢,答案就是改变注册表来加速相应的三维渲染程序. 1 tesla gpu p40 p100 加速 在windows中使用regedit 来改变 核显配置, 让p100 p40 等等显卡通过核显…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析
Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么?它的作用是什么? Spring框架的核心容器是IoC(控制反转)容器。它的主要作用是管理对…...
渗透实战PortSwigger靶场:lab13存储型DOM XSS详解
进来是需要留言的,先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码,输入的<>当成字符串处理回显到页面中,看来只是把用户输…...
