当前位置: 首页 > news >正文

机器学习——决策树(三)

【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。

1、案例一

决策树用于是否赖床问题。

采用决策树进行分类,要经过数据采集、特征向量化、模型训练和决策树可视化4个步骤。

赖床数据链接:https://pan.baidu.com/s/1mi7Is8YyGVbtrkxnHytlVA 
提取码:cndl

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn import tree
from sklearn.model_selection import train_test_split#pandas读取CSV文件,header= None,表示不将首行作为列标签
data = pd.read_csv('laichuang.csv', header = None)#指定列
data.columns = ['season', 'after 8:00', 'wind', 'lay bed']
vec = DictVectorizer(sparse = False)#对字典进行向量化,FALSE表示不产生稀疏矩阵
feature = data[['season', 'after 8:00', 'wind']]
x_train = vec.fit_transform(feature.to_dict('records'))
#打印各个变量
print('show feature\n', feature)
print('show vector\n', x_train)
print('show vector name\n', vec.get_feature_names_out())

【运行结果】

#划分数据集
x_trian, x_test, y_train, y_test = train_test_split(x_train, feature, test_size = 0.3)
#训练决策树
clf = tree.DecisionTreeClassifier(criterion = 'gini')
clf.fit(x_train, feature)
#决策树可视化,保存DOT文件
with open('d:lay.dot', 'w') as f:f = tree.export_graphviz(clf, out_file = f, feature_names = vec.get_feature_names_out())

【运行结果】

2、决策树可视化

2.1 Graphviz

        Graphviz是一款来自AT&T Research实验窒和Lucent Bell 实验室的开源的可视化图形工具,可以绘制结构化的图形网络,支持多种格式输出。Graphviz将 Python 代码生成的dot 脚本解析为树状图。
Graphviz的安装及配置步骤如下:
1:访问网址http://www.graphviz.org/,下载Graphviz 软件安装包graphviz

2:双击该安装包,运行安装程序,将Graphviz安装到C盘,选择添加到环境变量中。



3:使用pip安装 graphviz,命令如下:
pip install graphviz

2.2 DOT

        DOT是一种文本图形描述语言,用于描述图表的组成元素及其关系。DOT 文件通常以.gv或.dot为扩展名。DOT 与 Graphviz的关系可以类比 HTML 和浏览器的关系。打开.cmd窗口,进人out.dot所在目录,此处为D盘根目录,运行dot命令,如图所示。

dot out.dot - T paf -o out.pdf

打开PDF文件显示。

3、案例二

波士顿房价

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import pandas as pd
import numpy as npdata_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
x = data
y = target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 33)
#特征预处理,对训练数据和测试数据标准化
ss_x = StandardScaler()
x_train = ss_x.fit_transform(x_train)
x_test = ss_x.transform(x_test)
ss_y = StandardScaler()
y_train = ss_y.fit_transform(y_train.reshape(-1,1))
y_test = ss_y.transform(y_test.reshape(-1,1))
#使用回归树进行训练和预测,初始化KNN回归模型,使用平均回归算法进行预测
dtr = DecisionTreeRegressor()
#训练
dtr.fit(x_train, y_train)
#预测,保存预测结果
dtr_y_predict = dtr.predict(x_test)
#模型评估
print('回归树的默认评估值为:', dtr.score(x_test, y_test))
print('回归树的R_squared值为:', r2_score(y_test, dtr_y_predict))
# print('回归树的均方误差为:',mean_squared_error(ss_y.inverse_transform(y_test),
#                                       ss_y.inverse_transform(dtr_y_predict)))
# print('回归树的平均绝对误差为:', mean_absolute_error(ss_y.inverse_transform(y_test),
#                                           ss_y.inverse_transform(dtr_y_predict)))

【运行结果】

相关文章:

机器学习——决策树(三)

【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。 1、案例一 决策树用于是否赖床问题。 采用决策树进行分类,要经过数据采集、特征向量化、模型训练和决策树可视化4个步骤。 赖床数据链接:https://pan…...

模型量化之AWQ和GPTQ

什么是模型量化 模型量化(Model Quantization)是一种通过减少模型参数表示的位数来降低模型计算和存储开销的技术。一般来说,模型参数在深度学习模型中以浮点数(例如32位浮点数)的形式存储,而模型量化可以…...

一个简单的 HTTP 请求和响应服务——httpbin

拉取镜像 docker pull kennethreitz/httpbin:latest 查看本地是否存在存在镜像 docker images | grep kennethreitz/httpbin:latest 创建 deployment,指定镜像 apiVersion: apps/v1 kind: Deployment metadata:labels:app: httpbinname: mm-httpbinnamespace: mm-…...

2024黑龙江省职业院校技能大赛暨国赛选拔赛应用软件系统开发赛项(高职组)赛题第3套

2024黑龙江省职业院校技能大赛暨国赛选拔赛 应用软件系统开发赛项(高职组) 赛题第3套 目录: 需要竞赛源码资料可以私信博主。 竞赛说明 模块一:系统需求分析 任务1:制造执行MES—质量管理—来料检验(…...

云原生Kubernetes系列 | Kubernetes Secret及ConfigMap

云原生Kubernetes系列 | Kubernetes Secret及Configmap 1. Secret及Configmap使用背景简介2. Secret2.1. Secret创建方式2.1.1. 命令行方式2.1.2. 文件方式2.1.3. 变量方式2.1.4. YAML文件方式2.2. Secret使用方式2.2.1. 用于传递配置文件2.2.3. 用于传递变量3. ConfigMap1. Se…...

dev express 15.2图表绘制性能问题

dev express 15.2 绘制曲线 前端代码 <dxc:ChartControl Grid.Row"1"><dxc:XYDiagram2D EnableAxisXNavigation"True"><dxc:LineSeries2D x:Name"series" CrosshairLabelPattern"{}{A} : {V:F2}"/></dxc:XYDi…...

单链表的创建,插入及删除(更新ing)

1.单链表创建 ptr为头指针&#xff0c;指向头结点地址&#xff0c;即该指针变量的值为头结点地址&#xff1b; mov为一个辅助指针&#xff0c;用于将链表尾节点的指针域next指向新增节点的地址. search为一个辅助指针&#xff0c;用于遍历链表各节点地址&#xff0c;打印各节…...

C#/WPF 播放音频文件

C#播放音频文件的方式&#xff1a; 播放系统事件声音使用System.Media.SoundPlayer播放wav使用MCI Command String多媒体设备程序接口播放mp3&#xff0c;wav&#xff0c;avi等使用WindowsMediaPlayer的COM组件来播放(可视化)使用DirectX播放音频文件使用Speech播放(朗读器&am…...

如何使用宝塔面板+Discuz+cpolar内网穿透工具搭建可远程访问论坛服务

文章目录 前言1.安装基础环境2.一键部署Discuz3.安装cpolar工具4.配置域名访问Discuz5.固定域名公网地址6.配置Discuz论坛 前言 Crossday Discuz! Board&#xff08;以下简称 Discuz!&#xff09;是一套通用的社区论坛软件系统&#xff0c;用户可以在不需要任何编程的基础上&a…...

【HBase】——简介

1 HBase 定义 Apache HBase™ 是以 hdfs 为数据存储的&#xff0c;一种分布式、可扩展的 NoSQL 数据库。 2 HBase 数据模型 • HBase 的设计理念依据 Google 的 BigTable 论文&#xff0c;论文中对于数据模型的首句介绍。 Bigtable 是一个稀疏的、分布式的、持久的多维排序 m…...

JAVA 有关PDF文件和图片文件合并并生产一个PDF

情景&#xff1a; 1.文件列表包含多个图片和PDF时需要对文件进行合并 2.合并时保持文件顺序 开淦&#xff1a; 一、导入POM <dependency><groupId>org.apache.pdfbox</groupId><artifactId>pdfbox</artifactId><version>2.0.24</ve…...

八股文打卡day10——计算机网络(10)

面试题&#xff1a;HTTP1.1和HTTP2.0的区别&#xff1f; 我的回答&#xff1a; 1.多路复用&#xff1a;HTTP1.1每次请求响应一次都得建立一次连接&#xff0c;HTTP1.1引入了持久连接Connection&#xff1a;Keep-Alive&#xff0c;可以建立一次连接&#xff0c;进行多次请求响…...

Spring Boot学习:Flyway详解

Flyway Flyway 是一款开源的数据库版本管理工具&#xff0c;用于管理和自动化数据库结构的变更。它可以跟踪和管理数据库的版本控制&#xff0c;并在应用程序启动时自动执行升级或回滚操作。 使用Flyway&#xff0c;你可以将数据库的变更以可重复且可控的方式应用到不同环境中…...

Spark编程实验三:Spark SQL编程

目录 一、目的与要求 二、实验内容 三、实验步骤 1、Spark SQL基本操作 2、编程实现将RDD转换为DataFrame 3、编程实现利用DataFrame读写MySQL的数据 四、结果分析与实验体会 一、目的与要求 1、通过实验掌握Spark SQL的基本编程方法&#xff1b; 2、熟悉RDD到DataFram…...

文献研读|Prompt窃取与保护综述

本文介绍与「Prompt窃取与保护」相关的几篇工作。 目录 1. Prompt Stealing Attacks Against Text-to-Image Generation Models&#xff08;PromptStealer&#xff09;2. Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery&#…...

cfa一级考生复习经验分享系列(十四)

首先说一下自己的背景&#xff0c;一个和金融没有半毛钱关系的数据分析师&#xff0c;之前考出了FRM。这次用一个半月突击12月的1级考试拿到了9A1B的成绩&#xff0c;纯属运气。以下纯属经&#xff08;chě&#xff09;验&#xff08;dn&#xff09;&#xff0c;请看看就好&…...

vue本地缓存搜索记录(最多4条)

核心代码 //保存到搜索历史&#xff0c;最多存四个 item.name和item.code格式为&#xff1a;塞力斯000001var history uni.getStorageSync(history) || [];console.log("history", history)var index history.findIndex((items) > {return item.name items.nam…...

Linux创建Macvlan网络

最近在看Docker的网络&#xff0c;测试Macvlan部分时&#xff0c;发现Docker创建Macvlan与预期测试结果不一样。所以查阅了Linux下配置Macvlan&#xff0c;记录如下。 参考 1.Linux Macvlan 2.图解几个与Linux网络虚拟化相关的虚拟网卡-VETH/MACVLAN/MACVTAP/IPVLAN 3.创建ma…...

从企业级负载均衡到云原生,深入解读F5

上世纪九十年代&#xff0c;Internet快速发展催生了大量在线网站&#xff0c;Web访问量迅速提升。在互联网泡沫破灭前&#xff0c;这个领域基本是围绕如何对Web网站进行负载均衡与优化。从1997年F5发布了BIG-IP&#xff0c;到快速地形成完整ADC产品线&#xff0c;企业级负载均衡…...

什么是redis雪崩

Redis雪崩是指在使用Redis作为缓存数据库时&#xff0c;由于某种原因导致Redis服务器不可用或性能严重下降&#xff0c;从而导致大量的请求集中到数据库服务器上&#xff0c;甚至直接导致数据库服务器崩溃。 当Redis服务器出现雪崩时&#xff0c;原本应该被缓存的数据无法从缓…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物&#xff0c;因为每个访问一个线程局部变量的线程&#xff08;通过其 get 或 set 方法&#xff09;都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段&#xff0c;这些类希望将…...

2.2.2 ASPICE的需求分析

ASPICE的需求分析是汽车软件开发过程中至关重要的一环&#xff0c;它涉及到对需求进行详细分析、验证和确认&#xff0c;以确保软件产品能够满足客户和用户的需求。在ASPICE中&#xff0c;需求分析的关键步骤包括&#xff1a; 需求细化&#xff1a;将从需求收集阶段获得的高层需…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...