智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.金豺算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用金豺算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.金豺算法
金豺算法原理请参考:https://blog.csdn.net/u011835903/article/details/125132833
金豺算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
金豺算法参数如下:
%% 设定金豺优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升。表明金豺算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于金豺算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.金豺算法4.实验参数设定5.算法结果6.参考文献7.MA…...
Isaac Sim 仿真机器人urdf文件导入
本教程展示如何在 Omniverse Isaac Sim 中导入 urdf 一. 使用内置插件导入urdf 安装urdf 插件 方法是转到“window”->“Extensions” 搜索框中输入urdf, 并启用 通过转至Isaac Utils -> Workflows -> URDF Importer菜单来访问 urdf 扩展。 表格中的 1,2,3 对应着…...
Python 实现Excel和CSV之间的相互转换
通过使用Python编程语言,编写脚本来自动化Excel和CSV之间的转换过程,可以批量处理大量文件,定期更新数据,并集成转换过程到自动化工作流程中。本文将介绍如何使用第三方库Spire.XLS for Python 实现: 使用Python将Exc…...
【GitHub精选项目】短信系统测试工具:SMSBoom 操作指南
前言 本文为大家带来的是 OpenEthan 开发的 SMSBoom 项目 —— 一种用于短信服务测试的工具。这个工具能够发送大量短信,通常用于测试短信服务的稳定性和处理能力。在合法和道德的范畴内,SMSBoom 可以作为一种有效的测试工具,帮助开发者和系统…...
【Filament】立方体贴图(6张图)
1 前言 本文通过一个立方体贴图的例子,讲解三维纹理贴图(子网格贴图)的应用,案例中使用 6 张不同的图片给立方体贴图,图片如下。 读者如果对 Filament 不太熟悉,请回顾以下内容。 Filament环境搭建绘制三角…...
SpringBoot 3.2.0 结合Redisson接入Redis
依赖版本 JDK 17 Spring Boot 3.2.0 Redisson 3.25.0 工程源码:Gitee 集成Redis步骤 导入依赖 <properties><redisson.version>3.25.0</redisson.version> </properties> <dependencies><dependency><groupId>org.pr…...
C++ 比C语言增加的新特性 5 之字符串string
1. c 的string类型 1.1 创建和初始化字符串 string.cpp #include "iostream" #include <string>using namespace std;//创建和初始化字符串 int main() {// 初始化空字符串string emptyString;// 使用字符串字面量初始化字符串string greeting "hello, …...
【第2讲】原理介绍和权限开通
系列文章目录 第1讲:Python环境的下载和安装第2讲:免费开通权限第3讲:1行代码,自动发正文第4讲:1行代码,自动发正文+附件第5讲:自动批量发送第6讲:1行代码,自动下载邮件的附件提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录…...
C++ opencv-3.4.1 提取不规则物体的轮廓
在学习opencv的时候,对一张照片,需要标注照片上物体的不规则轮廓。 如图: 使用opencv进行物体的轮廓处理,关键在于对照片的理解,前期的照片处理的越好最后调用api出来的结果就越接近理想值。 提取照片中物体分如下三步ÿ…...
ServletConfig对象.
是什么 ServletConfig是javax.servlet.包下的一个接口,ServletConfig它是Servlet的一个配置对象; ServletConfig是由tomcat容器创建,通过init方法传入给Servlet; ServletConfig对象如何获取? 在GenericServlet里面定义了&#x…...
jQuery实现框里画面的展开、收起和停止
jQuery实现框里画面的展开、收起和停止 主要用到动画效果中的三个操作: (“id”).slideDown(3000); // 后面的数字表示效果的时长 (“id”).stop(); (“id”).slideUp(3000); 效果图 代码如下: <!DOCTYPE html> <html lang"en…...
less 查看文本时,提示may be a binary file.See it anyway?
解决办法 首先使用echo $LESSCHARSET查看less的编码 看情况设置less的编码格式(我的服务器上使用utf-8查看中文) 还要特别注意一下,Linux中存在的文本文件的编码一定要是utf - 8;(这一步很关键) 例如:要保证windows上传到Linux的…...
H266/VVC帧内预测编码技术概述
预测编码技术 预测编码(Prediction Coding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。 视频中的每个像素看成一个信源符号ÿ…...
重组蛋白表达系统的比较-卡梅德生物
一、重组蛋白表达是什么? 重组蛋白表达是通过基因工程手段将目标蛋白基因导入宿主细胞,使其表达出特定的蛋白。该过程包括以下步骤: 1. 构建表达载体:将目标蛋白基因插入表达载体中,通常选择带有启动子、终止子和选择…...
【Java、Python】获取电脑当前网络IP进行位置获取(附源码)
我相信看到这篇博客的时候心里肯定是想解决自己的一个问题的,而这篇博客我就以简单快速的方式解决这些烦恼! 一、获取当前IP 在Java中自带了一些自己的流对象来获取当前的IP地址,不多说我们直接上代码。 //获取当前网络ip地址 ipAddress Ine…...
接口测试学习笔记
文章目录 认识urlhttp协议接口规范Postman实现接口测试设计接口测试用例使用软件发送请求并查看响应结果Postman 自动关联Postman如何提交multipart/form-data请求数据Postman如何提交查询参数Postman 如何批量执行用例单接口测试Postman 断言Postman参数化 接口测试自动化requ…...
一起玩儿物联网人工智能小车(ESP32)——14. 用ESP32的GPIO控制智能小车运动起来(二)
摘要:本文主要讲解如何使用Mixly实现对单一车轮的运动控制。 下面就该用程序控制我们的小车轮子转起来了。打开Mixly软件,然后单击顶部“文件”菜单中的“新建”功能,我们来开启一个新程序的开发工作。 我们的工作同样是先从最简单的开始&am…...
[PyTorch][chapter 8][李宏毅深度学习][DNN 训练技巧]
前言: DNN 是神经网络的里面基础核心模型之一.这里面结合DNN 介绍一下如何解决 深度学习里面过拟合,欠拟合问题 目录: DNN 训练常见问题 过拟合处理 欠拟合处理 keras 项目 一 DNN 训练常见问题 我们在深度学习网络训练的时候经常会遇到下面…...
Nginx快速入门:实现企业安全防护|nginx部署https,ssl证书(七)
0. 引言 之前我们讲到nginx的一大核心作用就是实现企业安全防护,而实现安全防护的原理就是通过部署https证书,以此实现参数加密访问,从而加强企业网站的安全能力。 nginx作为各类服务的统一入口,只需要在入口处部署一个证书&…...
将Go语言开发的Web程序部署到K8S
搭建K8S基础环境 如果已经有K8S环境的同学可以跳过,如果没有,推荐你看看我的《Ubuntu22加Minikue搭建K8S环境》,课程目录如下: Ubuntu22安装Vscode 下载:https://code.visualstudio.com/Download 安装命令&#…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
