sklearn 逻辑回归Demo
逻辑回归案例
假设表示
基于上述情况,要使分类器的输出在[0,1]之间,可以采用假设表示的方法。
设 h θ ( x ) = g ( θ T x ) h_θ (x)=g(θ^T x) hθ(x)=g(θTx),
其中 g ( z ) = 1 ( 1 + e − z ) g(z)=\frac{1}{(1+e^{−z} )} g(z)=(1+e−z)1, 称为逻辑函数(Sigmoid function,又称为激活函数,生物学上的S型曲线)
h θ ( x ) = 1 ( 1 + e − θ T X ) h_θ (x)=\frac{1}{(1+e^{−θ^T X} )} hθ(x)=(1+e−θTX)1
其两条渐近线分别为h(x)=0和h(x)=1
在分类条件下,最终的输出结果是:
h θ ( x ) = P ( y = 1 │ x , θ ) h_θ (x)=P(y=1│x,θ) hθ(x)=P(y=1│x,θ)
其代表在给定x的条件下 其y=1的概率
P ( y = 1 │ x , θ ) + P ( y = 0 │ x , θ ) = 1 P(y=1│x,θ)+P(y=0│x,θ)=1 P(y=1│x,θ)+P(y=0│x,θ)=1
决策边界( Decision boundary)
对假设函数设定阈值 h ( x ) = 0.5 h(x)=0.5 h(x)=0.5,
当 h ( x ) ≥ 0.5 h(x)≥0.5 h(x)≥0.5 时,输出结果y=1.
根据假设函数的性质,当 x ≥ 0 时, x≥0时, x≥0时,h(x)≥0.5
用 θ T x θ^T x θTx替换x,则当 θ T x ≥ 0 θ^T x≥0 θTx≥0时, h ( x ) ≥ 0.5 , y = 1 h(x)≥0.5,y=1 h(x)≥0.5,y=1
解出 θ T x ≥ 0 θ^T x≥0 θTx≥0,其答案将会是一个在每一个 x i x_i xi轴上都有的不等式函数。
这个不等式函数将整个空间分成了y=1 和 y=0的两个部分,称之为决策边界。
激活函数的代价函数
在线性回归中的代价函数:
J ( θ ) = 1 m ∑ i = 1 m 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 J(θ)=\frac{1}{m}∑_{i=1}^m \frac{1}{2} (h_θ (x^{(i)} )−y^{(i)} )^2 J(θ)=m1i=1∑m21(hθ(x(i))−y(i))2
令 C o s t ( h θ ( x ) , y ) = 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 Cost(hθ (x),y)=\frac{1}{2}(h_θ (x^{(i)} )−y^{(i)} )^2 Cost(hθ(x),y)=21(hθ(x(i))−y(i))2,
Cost是一个非凹函数,有许多的局部最小值,不利于使用梯度下降法。对于分类算法,设置其代价函数为:
J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) l o g ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) ∗ l o g ( 1 − h θ ( x ( i ) ) ) ] J(θ)=-\frac{1}{m}∑_{i=1}^m [y^{(i)}log(h_θ (x^{(i)}) )−(1-y^{(i)})*log(1-h_θ (x^{(i)}))] J(θ)=−m1i=1∑m[y(i)log(hθ(x(i)))−(1−y(i))∗log(1−hθ(x(i)))]
对其化简:
C o s t ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( ( 1 − y ) l o g ( 1 − h θ ( x ) ) ) Cost(h_θ (x),y)=−ylog(h_θ (x))−((1−y)log(1−h_θ (x))) Cost(hθ(x),y)=−ylog(hθ(x))−((1−y)log(1−hθ(x)))
检验:
当 y = 1 y=1 y=1时, − l o g ( h θ ( x ) ) −log(h_θ (x)) −log(hθ(x))
当 y = 0 y=0 y=0时, − l o g ( 1 − h θ ( x ) ) −log(1−h_θ (x)) −log(1−hθ(x))
那么代价函数可以写成:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) l o g ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ] J(θ)=-\frac{1}{m}[∑_{i=1}^m y^{(i)} log(h_θ(x^{(i)} ))+(1−y^{(i)}) log(1−h_θ (x^{(i)}))] J(θ)=−m1[i=1∑my(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i)))]
对于代价函数,采用梯度下降算法求θ的最小值:
θ j ≔ θ j − α ∂ J ( θ ) ∂ θ j θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} θj:=θj−α∂θj∂J(θ)
代入梯度:
θ j ≔ θ j − α ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j i θ_j≔θ_j−α∑_{i=1}^m(h_θ (x^{(i)} )−y^{(i)} ) x_j^i θj:=θj−αi=1∑m(hθ(x(i))−y(i))xji
sklearn 代码
导入库
## 基础函数库
import numpy as np ## 导入画图库
import matplotlib.pyplot as plt## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression
模型训练
## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])## 调用逻辑回归模型
lr_clf = LogisticRegression()## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
模型参数查看
## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()
模型预测
## 在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
相关文章:

sklearn 逻辑回归Demo
逻辑回归案例 假设表示 基于上述情况,要使分类器的输出在[0,1]之间,可以采用假设表示的方法。 设 h θ ( x ) g ( θ T x ) h_θ (x)g(θ^T x) hθ(x)g(θTx), 其中 g ( z ) 1 ( 1 e − z ) g(z)\frac{1}{(1e^{−z} )} g(z)(1e−z)1…...

什么是众创空间?他有什么特点?
众创空间,是一种为大众创新创业提供专业化服务的创业服务平台,是顺应网络时代创新创业特点和需求,通过市场化机制、专业化服务和资本化途径构建的低成本、便利化、全要素、开放式的新型创业服务平台的统称。众创空间包括创客空间、联合办公空…...

什么是数据分析思维
参考 一文学会如何做电商数据分析(附运营分析指标框架) 电子商务该如何做数据分析?如何数据分析入门(从各项指标表象进入) https://www.processon.com/outline/6589838c3129f1550cc69950 数据分析步骤 什么是数据分析…...

利用Milvus Cloud和LangChain构建机器人:一种引人入胜且通俗易懂的方法
一、引言 机器人已经深入我们的日常生活,从家庭服务到工业生产,再到医疗和运输等领域。然而,这些机器人往往需要复杂的算法和数据处理技术才能有效地执行任务。在这个过程中,人工智能(AI)和机器学习&#…...

数据结构-如何实现一个队列?逐步解析与代码示例(超详细)
文章目录 前言1.队列的基本概念2.链表与数组实现队列的区别2.1数据存储结构2.2性能2.3内存使用 3.为什么选择链表实现队列?4.结构定义函数声明 5.核心操作5.1初始化 (QInit)5.2销毁 (QDestroy)5.3入队 (QPush)5.4出队 (QPop) 6.队列的查询操作6.1队首元素 (QueueFro…...

爬虫工作量由小到大的思维转变---<第二十三章 Scrapy开始很快,越来越慢(医病篇)>
诊断篇https://blog.csdn.net/m0_56758840/article/details/135170994?ops_request_misc%257B%2522request%255Fid%2522%253A%2522170333243316800180644102%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id1703332433168001806441…...

.Net7.0 或更高版本 System.Drawing.Common 上传图片跨平台方案
项目升级.Net7.0以后,System.Drawing.Common开关已经被删除,且System.Drawing.Common仅在 Windows 上支持 ,于是想办法将原来上传图片验证文件名和获取图片扩展名方法替换一下,便开始搜索相关解决方案。 .Net6.0文档:…...

【MySQL】InnoDB和MyISAM区别
文章目录 一、索引不同1 InnoDB聚簇索引,MyISAM非聚簇索引1 InnoDB聚簇索引2 MyISAM非聚簇索引 2 InnoDB必须要有主键,MyISAM允许没有主键3 InnoDB支持外键4 InnoDB不支持全文索引5 索引保存位置不同 二、对事物的支持三、存储结构不同四、存储空间不同五…...

3分钟了解安全数据交换系统有什么用!
企业为了保护核心数据安全,都会采取一些措施,比如做网络隔离划分,分成了不同的安全级别网络,或者安全域,接下来就是需要建设跨网络、跨安全域的安全数据交换系统,将安全保障与数据交换功能有机整合在一起&a…...

记录汇川:MODBUS TCP-梯形图
H5U的MODBUS通信不需要编写程序,通过组态MODBUS通信配置表,实现数据通信。 Modbus-TCP 主站即Modbus-TCP客户端,通过Modbus-TCP配置,可最多支持同时与31个 Modbus-TCP服务器(从站)进行通讯。 …...
electron + sqlite3 解决打包后无法写入数据库
前言 window环境。 electron28.0.0 sqlite35.1.6 使用 electron-builder 打包。 本文旨在解决打包后无法写入数据库的问题。 但如果你是打包后无法访问sqlite,且有报错弹窗,不妨也看看本文。 也许是同一种原因。 错误原因分析 打包后无法创建db文件&…...
【uniapp小程序-生成二维码+多个图片文字合并一张图】
<!-- 二维码 --><canvas id"qrcode" canvas-id"qrcode" width"120" ></canvas><!-- 生成带小程序码的分享图片 --><canvas canvas-id"shareCanvas" class"share-canvas"></canvas>#qrc…...

Text-to-SQL小白入门(十)RLHF在Text2SQL领域的探索实践
本文内容主要基于以下开源项目探索实践, Awesome-Text2SQL:GitHub - eosphoros-ai/Awesome-Text2SQL: Curated tutorials and resources for Large Language Models, Text2SQL, Text2DSL、Text2API、Text2Vis and more.DB-GPT-Hub:GitHub - eosphoros-ai…...

深度学习 | 基本循环神经网络
1、序列建模 1.1、序列数据 序列数据 —— 时间 不同时间上收集到的数据,描述现象随时间变化的情况。 序列数据 —— 文本 由一串有序的文本组成的序列,需要进行分词。 序列数据 —— 图像 有序图像组成的序列,后一帧图像可能会受前一帧的影响…...
VSCode 加Cortex-Debug嵌入式调试方法
简介 当使用ARM Cortex-M微控制器时,Cortex-Debug是一个Visual Studio Code的扩展,以简化调试过程。本文档介绍了如何编写启动配置(launch.json)。 settings.json配置 打开VSCode用户设置文件settings.json: 文件→偏好→设置选择用户设置: 在搜索栏中…...

etcd-workbench一款免费好用的ETCD客户端,支持SSHTunnel、版本对比等功能
介绍 今天推荐一款完全免费的ETCD客户端,可以私有化部署: etcd-workbench 开源地址:https://github.com/tzfun/etcd-workbench Gitee地址:https://gitee.com/tzfun/etcd-workbench 下载 本地运行 从 官方Release 下载最新版的 jar 包&am…...

华为ipv6配置之ospf案例
R1 ipv6 ospfv3 1 router-id 1.1.1.1 //必须要手动配置ospf id,它不会自动生成 interface GigabitEthernet0/0/0 ipv6 enable ipv6 address 2000::2/96 ospfv3 1 area 0.0.0.0 interface LoopBack0 ipv6 enable ipv6 address 2001::1/96 ospfv3 1 area 0.0.0.0 R2…...
Design patterns--装饰模式
设计模式之装饰模式 使用装饰模式来封装Nmea0183语句。 代码 #ifndef DATAPARSER_H #define DATAPARSER_H#include <string> #include <vector>class DataParser { public:DataParser();virtual std::string fieldAnalysis(std::vector<std::string> vecSt…...

卷积神经网络 反向传播
误差的计算 softmax 经过softmax处理后所有输出节点概率和为1 损失(激活函数) 多分类问题:输出只可能归于某一个类别,不可能同时归于多个类别。 误差的反向传播 求w的误差梯度 权值的更新...
java面试题20
Java中的类加载机制可继续通过自定义类加载器来实现热部署、插件化和动态加载等功能,使得应用程序能够在运行时加载未知的类和资源。 什么是Java中的多线程(Multithreading)?它有什么作用? 答案:多线程是一…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...