Caffeine--缓存组件
Caffeine
- 概念
- 缓存
- 手动加载
- 自动加载
- 手动异步加载
- 自动异步加载
- 驱逐策略
- 基于容量
- 基于时间
- 基于引用
- 移除
- 显式移除
概念
Caffeine是一个基于Java8开发的提供了近乎最佳命中率的高性能的缓存库。与ConcurrentMap有点相似。最根本的区别是ConcurrentMap将会持有所有加入到缓存当中的元素,直到它们被从缓存当中手动移除。Caffeine的缓存Cache 通常会被配置成自动驱逐缓存中元素,以限制其内存占用。在某些场景下,LoadingCache和AsyncLoadingCache尤为重要。
Caffeine提供了灵活的构造器去创建一个拥有下列特性的缓存:
(1)自动加载元素到缓存当中,异步加载的方式也可供选择
(2)当达到最大容量的时候可以使用基于就近度和频率的算法进行基于容量的驱逐
(3)将根据缓存中的元素上一次访问或者被修改的时间进行基于过期时间的驱逐
(4)当向缓存中一个已经过时的元素进行访问的时候将会进行异步刷新
(5)key将自动被弱引用所封装
(6)value将自动被弱引用或者软引用所封装
(7)驱逐(或移除)缓存中的元素时将会进行通知
(8)写入传播到一个外部数据源当中
(9)持续计算缓存的访问统计指标
缓存
Caffeine提供了四种缓存添加策略:手动加载,自动加载,手动异步加载和自动异步加载。
手动加载
Cache<String, String> cache = Caffeine.newBuilder().expireAfterWrite(10, TimeUnit.MINUTES).maximumSize(10000).build();// 查找一个缓存元素, 没有查找到的时候返回nullString s=cache.getIfPresent("xiaohei");// 查找缓存,如果缓存不存在则生成缓存元素, 如果无法生成则返回nulls= cache.get("xiaohei", k -> new String("啥也没有"));// 添加或者更新一个缓存元素cache.put("xiaohei1", new String());// 移除一个缓存元素cache.invalidate("xiaohei");
Cache 接口提供了显式搜索查找、更新和移除缓存元素的能力。
推荐使用cache.get(key, k -> value)操作来在缓存中不存在该key对应的缓存元素的时候进行计算生成并直接写入至缓存内,而当该key对应的缓存元素存在的时候将会直接返回存在的缓存值。一次 cache.put(key, value) 操作将会直接写入或者更新缓存里的缓存元素,在缓存中已经存在的该key对应缓存值都会直接被覆盖。也可以使用Cache.asMap()所暴露出来的ConcurrentMap的方法对缓存进行操作。
自动加载
LoadingCache<String, String> cache = Caffeine.newBuilder().maximumSize(10000).expireAfterWrite(10, TimeUnit.MINUTES).build(key -> new String("啥也没有"));
// 查找缓存,如果缓存不存在则生成缓存元素, 如果无法生成则返回nullString s = cache.get("xiaohei");
// 批量查找缓存,如果缓存不存在则生成缓存元素Map<String, String> map = cache.getAll(Arrays.asList(new String[]{"xiaohei1", "xiaohei2"}));
一个LoadingCache是一个Cache 附加上CacheLoader能力之后的缓存实现。默认情况下,在getAll 方法中,将会对每个不存在对应缓存的key调用一次CacheLoader.load来生成缓存元素。
手动异步加载
AsyncCache<String, String> cache = Caffeine.newBuilder().expireAfterWrite(10, TimeUnit.MINUTES).maximumSize(10000).buildAsync();// 查找一个缓存元素, 没有查找到的时候返回nullCompletableFuture<String> graph = cache.getIfPresent("xiaohei");// 查找缓存元素,如果不存在,则异步生成graph = cache.get("xiaohei", k -> new String("xiaoheissss"));// 添加或者更新一个缓存元素cache.put("xiaobai", graph);// 移除一个缓存元素cache.synchronous().invalidate("xiaohei");
一个AsyncCache是Cache的一个变体,AsyncCache提供了在Executor上生成缓存元素并返回 CompletableFuture的能力。这给出了在当前流行的响应式编程模型中利用缓存的能力。
synchronous()方法给Cache提供了阻塞直到异步缓存生成完毕的能力。也可以使用 AsyncCache.asMap()所暴露出来的ConcurrentMap的方法对缓存进行操作。默认的线程池实现是 ForkJoinPool.commonPool() ,也可以通过覆盖并实现 Caffeine.executor(Executor)方法来自定义线程池选择。
自动异步加载
AsyncLoadingCache<String, String> cache = Caffeine.newBuilder().maximumSize(10000).expireAfterWrite(10, TimeUnit.MINUTES)// 你可以选择: 去异步的封装一段同步操作来生成缓存元素.buildAsync(key -> new String(key));// 你也可以选择: 构建一个异步缓存元素操作并返回一个future
// .buildAsync((key, executor) -> createExpensiveGraphAsync(key, executor));// 查找缓存元素,如果其不存在,将会异步进行生成CompletableFuture<String> graph = cache.get("xiaohei");
// 批量查找缓存元素,如果其不存在,将会异步进行生成CompletableFuture<Map<String, String>> graphs = cache.getAll(Arrays.asList(new String[]{"xiaohei1", "xiaohei2"}));
一个 AsyncLoadingCache是一个AsyncCache加上AsyncCacheLoader能力的实现。在需要同步的方式去生成缓存元素的时候,CacheLoader是合适的选择。而在异步生成缓存的场景下,AsyncCacheLoader则是更合适的选择并且它会返回一个 CompletableFuture。默认情况下,在getAll 方法中,将会对每个不存在对应缓存的key调用一次 AsyncCacheLoader.asyncLoad 来生成缓存元素。 可以通过实现一个 AsyncCacheLoader.asyncLoadAll并在其中为没有在参数中请求的key也生成对应的缓存元素。如果对应某个key生成的缓存元素与包含这个key的一组集合剩余的key所对应的元素一致,那么在asyncLoadAll中也可以同时加载剩下的key对应的元素到缓存当中。
驱逐策略
基于容量
Caffeine提供了三种驱逐策略,分别是基于容量,基于时间和基于引用三种类型。
// 基于缓存内的元素个数进行驱逐
LoadingCache<String, String> graphs = Caffeine.newBuilder().maximumSize(10000).build(key -> new String(key));
// 基于缓存内元素权重进行驱逐
LoadingCache<String, String> graphs = Caffeine.newBuilder().maximumWeight(10000).weigher((String s, String s1) -> s1.length()).build(key -> new String(key));
基于缓存内的元素个数进行驱逐策略中,使用Caffeine.maximumSize(long)。缓存将会尝试通过基于就近度和频率的算法来驱逐掉不会再被使用到的元素。
缓存中的元素可能有不同的内存占用–需要借助Caffeine.weigher(Weigher)方法来界定每个元素的权重并通过 Caffeine.maximumWeight(long)方法来界定缓存中元素的总权重来实现上述的场景。在基于权重驱逐的策略下,一个缓存元素的权重计算是在其创建和更新时,此后其权重值都是静态存在的,在两个元素之间进行权重的比较的时候,并不会根据进行相对权重的比较。
基于时间
// 基于固定的过期时间驱逐策略LoadingCache<String, String> graphs1 = Caffeine.newBuilder().expireAfterAccess(5, TimeUnit.MINUTES).build(key -> new String());LoadingCache<String, String> graphs2 = Caffeine.newBuilder().expireAfterWrite(10, TimeUnit.MINUTES).build(key -> new String());// 基于不同的过期驱逐策略LoadingCache<String, String> graphs = Caffeine.newBuilder().expireAfter(new Expiry<String, String>() {@Overridepublic long expireAfterCreate(@NonNull String s, @NonNull String s2, long l) {return 0;}@Overridepublic long expireAfterUpdate(@NonNull String s, @NonNull String s2, long l, @NonNegative long l1) {return 0;}@Overridepublic long expireAfterRead(@NonNull String s, @NonNull String s2, long l, @NonNegative long l1) {return 0;}}).build(key -> new String());
expireAfterAccess(long, TimeUnit): 一个元素在上一次读写操作后一段时间之后,在指定的时间后没有被再次访问将会被认定为过期项。在当被缓存的元素时被绑定在一个session上时,当session因为不活跃而使元素过期的情况下,这是理想的选择。
expireAfterWrite(long, TimeUnit): 一个元素将会在其创建或者最近一次被更新之后的一段时间后被认定为过期项。在对被缓存的元素的时效性存在要求的场景下,这是理想的选择。
expireAfter(Expiry): 一个元素将会在指定的时间后被认定为过期项。当被缓存的元素过期时间收到外部资源影响的时候,这是理想的选择。
基于引用
// 当key和缓存元素都不再存在其他强引用的时候驱逐LoadingCache<String, String> graphs1 = Caffeine.newBuilder().weakKeys().weakValues().build(key -> new String());// 当进行GC的时候进行驱逐LoadingCache<String, String> graphs2 = Caffeine.newBuilder().softValues().build(key -> new String());
Caffeine 允许去让GC去帮助清理缓存当中的元素,其中key支持弱引用,而value则支持弱引用和软引用。AsyncCache不支持软引用和弱引用。
Caffeine.weakKeys():在保存key的时候将会进行弱引用。这允许在GC的过程中,当key没有被任何强引用指向的时候去将缓存元素回收。由于GC只依赖于引用相等性。这导致在这个情况下,缓存将会通过引用相等(==)而不是对象相等 equals()去进行key之间的比较。
Caffeine.weakValues():在保存value的时候将会使用弱引用。这允许在GC的过程中,当value没有被任何强引用指向的时候去将缓存元素回收。由于GC只依赖于引用相等性。这导致在这个情况下,缓存将会通过引用相等(==)而不是对象相等 equals()去进行value之间的比较。
Caffeine.softValues():在保存value的时候将会使用软引用。为了相应内存的需要,在GC过程中被软引用的对象将会被通过LRU算法回收。由于使用软引用可能会影响整体性能,我们还是建议通过使用基于缓存容量的驱逐策略代替软引用的使用。同样的,使用 softValues() 将会通过引用相等(==)而不是对象相等equals()去进行value之间的比较。
移除
驱逐:缓存元素因为策略被移除
失效:缓存元素被手动移除
移除:由于驱逐或者失效而最终导致的结果
显式移除
可以手动去让某个缓存元素失效而不是只能等待其因为策略而被驱逐。
// 失效key
cache.invalidate("小黑");
// 批量失效key
cache.invalidateAll(Arrays.asList(new String[]{"xiaohei1", "xiaohei2"}));
// 失效所有的key
cache.invalidateAll();
相关文章:
Caffeine--缓存组件
Caffeine 概念缓存手动加载自动加载手动异步加载自动异步加载 驱逐策略基于容量基于时间基于引用 移除显式移除 概念 Caffeine是一个基于Java8开发的提供了近乎最佳命中率的高性能的缓存库。与ConcurrentMap有点相似。最根本的区别是ConcurrentMap将会持有所有加入到缓存当中的…...
Centos7:Jenkins+gitlab+node项目启动(1)
Centos7:Jenkinsgitlabnode项目启动(1) Centos7:Jenkinsgitlabnode项目启动(1)-CSDN博客 Centos7:Jenkinsgitlabnode项目启动(2) Centos7:Jenkinsgitlabnode项目启动(2)-CSDN博客 Centos7:Jenkinsgitlabnode项目启…...
starrocks集群fe/be节点进程守护脚本
自建starrocks集群,有时候服务会挂掉,无法自动拉起服务,于是采用supervisor进行进程守护。可能是版本的原因,supervisor程序总是异常,无法对fe//be进行守护。于是写了个简易脚本。 #!/bin/bash AppNameFecom.starrock…...
奇富科技跻身国际AI学术顶级会议ICASSP 2024,AI智能感知能力迈入新纪元
近日,2024年IEEE声学、语音与信号处理国际会议ICASSP 2024(2024 IEEE International Conference on Acoustics, Speech, and Signal Processing)宣布录用奇富科技关于语音情感计算的最新研究成果论文“MS-SENet: Enhancing Speech Emotion Re…...
如何在Android Termux中使用SFTP实现远程传输文件
文章目录 1. 安装openSSH2. 安装cpolar3. 远程SFTP连接配置4. 远程SFTP访问5. 配置固定远程连接地址6、结语 SFTP(SSH File Transfer Protocol)是一种基于SSH(Secure Shell)安全协议的文件传输协议。与FTP协议相比,SFT…...
高频知识汇总 | 【操作系统】面试题汇总(万字长博通俗易懂)
前言 这篇我亲手整理的【操作系统】资料,融入了我个人的理解。当初我在研习八股文时,深感复习时的困扰,网上资料虽多,却过于繁杂,有的甚至冗余。例如,文件管理这部分,在实际面试中很少涉及&…...
【前端框架】NPM概述及使用简介
什么是 NPM npm之于Node,就像pip之于Python,gem之于Ruby,composer之于PHP。 npm是Node官方提供的包管理工具,他已经成了Node包的标准发布平台,用于Node包的发布、传播、依赖控制。npm提供了命令行工具,使你可以方便地下载、安装、升级、删除包,也可以让你作为开发者发布…...
C# LINQ
一、前言 学习心得:C# 入门经典第8版书中的第22章《LINQ》 二、LINQ to XML 我们可以通过LINQ to XML来创造xml文件 如下示例,我们用LINQ to XML来创造。 <Books><CSharp Time"2019"><book>C# 入门经典</book><…...
云原生机器学习平台cube-studio开源项目及代码简要介绍
1. cube-studio介绍 云原生机器学习平台cube-studio介绍:https://juejin.cn/column/7084516480871563272 cube-studio是开源的云原生机器学习平台,目前包含特征平台,支持在/离线特征;数据源管理,支持结构数据和媒体标…...
大小端存储是什么鬼?
以下内容为本人的著作,如需要转载,请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/htYGddzO2xPl9kDN4lANpQ 大小端存储的划分是为了解决长度大于一个字节的数据类型内容在存储地址上以不同顺序分布的问题。 比如16位的short整形&…...
WEB:探索开源PDF.js技术应用
1、简述 PDF.js 是一个由 Mozilla 开发的开源 JavaScript 库,用于在浏览器中渲染 PDF 文档。它的目标是提供一个纯粹的前端解决方案,摆脱了依赖插件或外部程序的束缚,使得在任何支持 JavaScript 的浏览器中都可以轻松地显示 PDF 文档。 2、…...
数据分析之词云图绘制
试验任务概述:如下为所给CSDN博客信息表,分别汇总了ai, algo, big-data, blockchain, hardware, math, miniprog等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计,绘制词频统计图,并根据词频统计的结果绘制词云图。…...
【赠书第13期】边缘计算系统设计与实践
文章目录 前言 1 硬件架构设计 2 软件框架设计 3 网络结构设计 4 安全性、可扩展性和性能优化 5 推荐图书 6 粉丝福利 前言 边缘计算是一种新兴的计算模式,它将计算资源推向网络边缘,以更好地满足实时性、低延迟和大规模设备连接的需求。边缘计算…...
数据库01_增删改查
1、什么是数据?什么是数据库? 数据:描述事物的符号记录称为数据。数据是数据库中存储的基本对象。数据库:存放数据的仓库,数据库中可以保存文本型数据、二进制数据、多媒体数据等数据 2、数据库的发展 第一阶段&…...
MySQL——进阶篇
二、进阶篇🚩 1. 存储引擎🍆 1.1 MSQL体系结构 连接层: 连接处理,连接认证,每个客户端的权限 服务层: 绝大部分核心功能,可跨存储引擎 可插拔存储引擎: 需要的时候可以添加或拔掉…...
Python 网络编程之搭建简易服务器和客户端
用Python搭建简易的CS架构并通信 文章目录 用Python搭建简易的CS架构并通信前言一、基本结构二、代码编写1.服务器端2.客户端 三、效果展示总结 前言 本文主要是用Python写一个CS架构的东西,包括服务器和客户端。程序运行后在客户端输入消息,服务器端会…...
往年面试精选题目(前50道)
常用的集合和区别,list和set区别 Map:key-value键值对,常见的有:HashMap、Hashtable、ConcurrentHashMap以及TreeMap等。Map不能包含重复的key,但是可以包含相同的value。 Set:不包含重复元素的集合&#…...
解决服务器Tab键不能补全问题
编辑~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml 命令:vim ~/.config/xfce4/xfconf/xfce-perchannel-xml/xfce4-keyboard-shortcuts.xml替换:<property name“<Super>Tab” type“string” value“switch_window…...
人工智能 机器学习 深度学习:概念,关系,及区别说明
如果过去几年,您读过科技主题的文章,您可能会遇到一些新词汇,如人工智能(Artificial Intelligence)、机器学习(Machine Learning)和深度学习(Deep Learning)等。这三个词…...
数据库——LAMP的搭建及MySQL基操
1.实验内容及原理 1. 在 Windows 系统中安装 VMWare 虚拟机,在 VMWare 中安装 Ubuntu 系统,并在 Ubuntu 中搭建 LAMP 实验环境。 2. 使用 MySQL 进行一些基本操作: (1)登录 MySQL,在 MySQL 中创建用户,并对…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
