深入理解 YOLOv8:解析.yaml 配置文件目标检测、实例分割、图像分类、姿态检测
目录
yolov8导航
YOLOv8(附带各种任务详细说明链接)
引言
YOLOv8配置文件概览
yolov8.yaml
1. nc
2. scales
3. backbone
4. head
yolov8-seg.yaml
1. 参数部分
2. 骨架(Backbone)部分
3. 头部(Head)部分
关键区别
yolov8-cls.yaml
1. 参数部分
2. 骨架(Backbone)部分
3. 头部(Head)部分
关键区别
yolov8-pose.yaml
1. 参数部分
2. 骨架(Backbone)部分
3. 头部(Head)部分
关键区别
总结
yolov8导航
如果大家想要了解关于yolov8的其他任务和相关内容可以点击这个链接,我这边整理了许多其他任务的说明博文,后续也会持续更新,包括yolov8模型优化、sam等等的相关内容。
YOLOv8(附带各种任务详细说明链接)
引言
近年来,YOLO(You Only Look Once)系列在目标检测领域取得了巨大成功。YOLOv8,作为该系列的最新成员,以其卓越的性能和灵活的配置受到广泛关注。今天,我们将深入探讨YOLOv8的配置文件(.yaml),这对于理解模型的内部工作机制至关重要。
YOLOv8配置文件概览
YOLOv8的配置文件定义了模型的关键参数和结构,包括类别数、模型尺寸、骨架(backbone)和头部(head)结构。这些配置决定了模型的性能和复杂性。
yolov8.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8目标检测模型,具有P3-P5输出。使用示例请参见 https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # 类别数目scales: # 模型复合缩放常数,例如 'model=yolov8n.yaml' 将调用带有 'n' 缩放的 yolov8.yaml# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n概览:225层, 3157200参数, 3157184梯度, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s概览:225层, 11166560参数, 11166544梯度, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m概览:295层, 25902640参数, 25902624梯度, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l概览:365层, 43691520参数, 43691504梯度, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x概览:365层, 68229648参数, 68229632梯度, 258.5 GFLOPs# YOLOv8.0n骨架
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n头部
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # 合并骨架P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # 合并骨架P3- [-1, 3, C2f, [256]] # 15 (P3/8-小)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # 合并头部P4- [-1, 3, C2f, [512]] # 18 (P4/16-中)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # 合并头部P5- [-1, 3, C2f, [1024]] # 21 (P5/32-大)- [[15, 18, 21], 1, Detect, [nc]] # 检测(P3, P4, P5)
在这个配置文件中,定义了多个不同尺寸的YOLOv8模型,每个模型具有不同的深度、宽度和通道数,以适应不同的计算能力和性能需求。骨架部分(backbone)定义了模型的基本结构,包括卷积层、自定义C2f模块和空间金字塔池化层。头部(head)则包括上采样、连接和检测层,负责将提取的特征用于最终的目标检测。
在yolov8.yaml配置文件中,每个关键词都扮演着特定的角色,下面是对这些关键词及其含义的详细解释:
1. nc
- 含义:
nc代表"number of classes",即模型用于检测的对象类别总数。 - 示例中的值:
80,表示该模型配置用于检测80种不同的对象。
2. scales
- 含义:
scales用于定义模型的不同尺寸和复杂度,它包含一系列缩放参数。 - 子参数:
n,s,m,l,x表示不同的模型尺寸,每个尺寸都有对应的depth(深度)、width(宽度)和max_channels(最大通道数)。
3. backbone
- 含义:
backbone部分定义了模型的基础架构,即用于特征提取的网络结构。 - 关键组成:
[from, repeats, module, args]表示层的来源、重复次数、模块类型和参数。Conv表示卷积层,其参数指定了输出通道数、卷积核大小和步长。C2f可能是一个特定于YOLOv8的自定义模块。SPPF是空间金字塔池化层,用于在多个尺度上聚合特征。
4. head
- 含义:
head部分定义了模型的检测头,即用于最终目标检测的网络结构。 - 关键组成:
nn.Upsample表示上采样层,用于放大特征图。Concat表示连接层,用于合并来自不同层的特征。C2f层再次出现,可能用于进一步处理合并后的特征。Detect层是最终的检测层,负责输出检测结果。
这部分,我这边会详细的叙述每一个关键词和节点的含义,以这个为标准,后续我这边概述其他.yaml的时候,我会更侧重描述他们跟这个的区别。
yolov8-seg.yaml
在详细说明yolov8-seg.yaml配置文件之前,让我们先了解一下它是用于什么的。这个配置文件专门为YOLOv8-seg模型设计,这是一个用于实例分割的模型。实例分割是计算机视觉中的一项高级任务,不仅需要识别图像中的对象(如目标检测),还要为每个对象的每个像素提供精确的分类。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
1. 参数部分
nc: 80:表示模型用于检测的类别数目为80,与目标检测模型相同。scales:定义模型的不同尺寸和复杂度,与目标检测模型相似,提供不同的缩放级别(n,s,m,l,x)。
2. 骨架(Backbone)部分
- 这部分与
yolov8.yaml非常相似,定义了模型的基础架构,包括多个卷积层(Conv)和自定义C2f层,用于特征提取。
3. 头部(Head)部分
- 在头部结构中,出现了上采样(
nn.Upsample)、连接(Concat)和C2f层,这与目标检测模型相似,用于处理和合并不同层次的特征。 - 最重要的区别在于最后的层:在实例分割模型中,使用的是
Segment层而不是Detect层。Segment层的参数为[nc, 32, 256],其中nc代表类别数,其余两个参数可能是特定于实例分割任务的配置,如用于分割的特定通道数和内部特征数量。
关键区别
- 任务类型:
yolov8-seg.yaml针对的是实例分割任务,而yolov8.yaml用于目标检测任务。实例分割不仅需要识别对象,还要为每个对象提供像素级的精确分类。 - 最后一层:
yolov8-seg.yaml中使用的是Segment层,专门用于实例分割,而yolov8.yaml使用的是Detect层,用于目标检测。
yolov8-seg.yaml配置文件是YOLOv8-seg实例分割模型的核心,它在基本结构上与标准的YOLOv8目标检测模型相似,但在最后的层面上进行了调整,以适应实例分割的特殊需求。这种灵活性和调整能力展示了YOLOv8模型家族的多功能性和适应不同计算机视觉任务的能力。
yolov8-cls.yaml
yolov8-cls.yaml配置文件专为YOLOv8-cls模型设计,这是一个面向图像分类任务的模型。与目标检测(YOLOv8)和实例分割(YOLOv8-seg)不同,图像分类的目的是为整个图像指定一个类别标签,而不是在图像中定位或分割特定对象。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify# Parameters
nc: 1000 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.00, 1.25, 1024]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]# YOLOv8.0n head
head:- [-1, 1, Classify, [nc]] # Classify
1. 参数部分
nc: 1000:表示模型用于分类的类别总数为1000。这比通常的目标检测或实例分割任务有更多的类别。scales:与yolov8-seg.yaml类似,定义了模型的不同尺寸和复杂度,通过提供不同的缩放级别(n,s,m,l,x)来适应不同的计算能力和资源。
2. 骨架(Backbone)部分
- 这部分与
yolov8-seg.yaml的骨架结构相似,包含多个卷积层(Conv)和自定义C2f层,用于提取图像特征。这表明无论是用于分类、检测还是分割,特征提取的基本原理是类似的。
3. 头部(Head)部分
- 这是与
yolov8-seg.yaml最显著的不同之处。在图像分类模型中,头部结构相对简单,只包含一个Classify层。Classify层的参数[nc]指定了类别的数量,这一层负责将提取的特征映射到类别标签上。
关键区别
- 任务类型:
yolov8-cls.yaml是为图像分类任务设计的,而非目标检测或实例分割。这意味着模型的输出是整个图像的类别标签,而不是图像中各个对象的位置或分割掩码。 - 头部结构:与处理更复杂的任务(如实例分割)相比,图像分类模型的头部结构更加简单,只包含一个
Classify层,直接对整个图像进行分类。
yolov8-cls.yaml配置文件针对的是图像分类任务,它在结构上与目标检测和实例分割模型有共通之处,尤其是在特征提取的骨架部分。然而,头部结构的简化体现了图像分类任务的直接性和专注性。这种配置展示了YOLOv8模型家族的多功能性和在不同计算机视觉任务中的应用能力。
yolov8-pose.yaml
yolov8-pose.yaml 配置文件是专为 YOLOv8-pose 模型设计的,这是一个用于关键点/姿态估计的模型。关键点估计是计算机视觉中的一项高级任务,它涉及识别和定位图像中人体或其他对象的特定关键点。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose# Parameters
nc: 1 # number of classes
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
1. 参数部分
nc: 1:表示模型用于检测的类别数目为1。在关键点估计任务中,通常关注的是单一类别(如人体)。kpt_shape: [17, 3]:定义了关键点的数量和维度。在此例中,有17个关键点,每个关键点有3个维度(x, y坐标和可见性)。scales:定义了模型的不同尺寸和复杂度,这与其他YOLOv8配置相似,提供不同的缩放级别(n,s,m,l,x)。
2. 骨架(Backbone)部分
- 这部分与其他YOLOv8配置文件相似,包含多个卷积层(Conv)和自定义C2f层,用于提取图像特征。
3. 头部(Head)部分
- 头部结构与其他YOLOv8模型相似,包含上采样(
nn.Upsample)、连接(Concat)和C2f层,用于处理和合并不同层次的特征。 - 关键的不同之处在于最后的层:
Pose层。这是专为关键点估计设计的层,其参数包括类别数(nc)和关键点形状(kpt_shape)。
关键区别
- 任务类型:
yolov8-pose.yaml配置文件是为关键点/姿态估计任务设计的,与用于图像分类、目标检测或实例分割的模型有明显不同。关键点估计需要识别和定位图像中的特定点。 - 头部结构:最大的区别在于
Pose层的使用,这是专门为关键点估计任务设计的,用于定位每个关键点的位置和可见性。
yolov8-pose.yaml配置文件体现了YOLOv8模型在处理不同类型计算机视觉任务时的灵活性。它在基础结构上与其他YOLOv8模型相似,但通过特定于任务的头部结构调整,适应了关键点估计这一复杂的任务。这种配置展示了YOLOv8模型家族的多功能性,以及在不同计算机视觉任务中的应用能力。
总结
YOLOv8系列模型展示了其在多个计算机视觉任务中的适应性和高效性。通过其多样化的配置文件,YOLOv8不仅在目标检测领域表现出色,还成功扩展到实例分割、图像分类和关键点/姿态估计等领域。每个配置文件针对特定任务优化,从而确保模型在处理不同类型的视觉数据时保持高准确率和效率。这种灵活性和多功能性使得YOLOv8成为当前最先进的视觉识别系统之一,为未来的技术创新和应用提供了广阔的可能性。如果有哪里写的不够清晰,小伙伴本可以给评论或者留言,我这边会尽快的优化博文内容,另外如有需要,我这边可支持技术答疑与支持。
相关文章:
深入理解 YOLOv8:解析.yaml 配置文件目标检测、实例分割、图像分类、姿态检测
目录 yolov8导航 YOLOv8(附带各种任务详细说明链接) 引言 YOLOv8配置文件概览 yolov8.yaml 1. nc 2. scales 3. backbone 4. head yolov8-seg.yaml 1. 参数部分 2. 骨架(Backbone)部分 3. 头部(Head&…...
oracle与mysql的分析函数(窗口函数)
分析函数定义 在SQL语句中,很多查询语句需要进行GROUP BY分组汇总,但是一旦经过分组,SELECT返回的记录数就会减少。为了保留所有原始行记录,并且仍可以进行分组数据分析,分析函数应运而生。 Oracle 8i 版本开始支持窗…...
《微信小程序开发从入门到实战》学习六十五
6.4 交互API 6.4.5 页面滚动API 使用wx.pageScrollTo接口可使页面自动滚动到目标位置。该接口介绍Object参,该参支持属性如下所示: scrollTop:必填,滚动到页面的目标位置,单位为px duration:滚动动画的…...
开箱即用的企业级数据和业务管理中后台前端框架Ant Design Pro 5的开箱使用和偏好配置
Ant Design Pro 介绍 Ant Design Pro 是一个开箱即用的企业级前端解决方案,基于 Ant Design 设计体系,提供了丰富的组件和功能,帮助开发者更快速地开发和部署企业级应用。 Ant Design Pro 使用 React、umi 和 dva 这三个主要的前端开发技术…...
怎么用Facebook找客户?Facebook开发客户攻略分享
跨境人最了解的电商平台之一就是Facebook了,说到Facebook,它拥有超过20亿的活跃用户,所以你可以在这个平台上面找到更多的潜在客户。今天的文章就主要分享用Facebook开发客户的方法,全是干货,建议收藏! 一、…...
【Vue2+3入门到实战】(12)自定义指令的基本语法(全局、局部注册)、 指令的值、v-loading的指令封装 详细示例
目录 一、学习目标1.自定义指令 二、自定义指令1.指令介绍2.自定义指令3.自定义指令语法4.指令中的配置项介绍5.代码示例6.总结 三、自定义指令-指令的值1.需求2.语法3.代码示例 四、自定义指令-v-loading指令的封装1.场景2.需求3.分析4.实现5.准备代码 六、自定义指令总结 一、…...
Android studio socket客户端应用设计
一、XML布局设计: <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com…...
【UTC格式】Oracle低版本实现UTC格式转换
Oracle低版本实现UTC格式转换 文章目录 Oracle低版本实现UTC格式转换前言一、创建 FUNCTION(GET_UTC_DATE)二、使用步骤1.跨年日期2.跨月日期(判断 闰年 or 平年、用于计算2月天数,正常大小月)3.跨日日期3.正常日期 总…...
[BUG] Hadoop-3.3.4集群yarn管理页面子队列不显示任务
1.问题描述 使用yarn调度任务时,在CapacityScheduler页面上单击叶队列(或子队列)时,不会显示应用程序任务信息,root队列可以显示任务。此外,FairScheduler页面是正常的。 No matching records found2.原…...
Java 缓存中间件
Java 缓存中间件 关键词:Spring Cache、J2Cache、JetCache 一 、JSR 107 JSR107 中制订了 Java 缓存的规范。 因此,在很多缓存框架、缓存库中,其 API 都参考了 JSR 107 规范。 img Java Caching 定义了 5 个核心接口 CachingProvider - 定义…...
使用cmake配置matplotlibcpp生成VS项目
https://gitee.com/feboreigns/matplotlibcpp 这篇文章需要一些cmake基础,python基础,visualstudio基础 准备环境 注意如果在VS平台使用必须要手动下载python,不能使用conda里面的,比如3.8版本,因为conda里面没有py…...
Android : 画布绘制矩形和文字 让其居中显示简单应用
示例图: CenterView.java package com.example.demo;import android.content.Context; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.util.Log; import android.view.View;public class Center…...
科研学习|论文解读——融合类目偏好和数据场聚类的协同过滤推荐算法研究
论文链接(中国知网): 融合类目偏好和数据场聚类的协同过滤推荐算法研究 - 中国知网 (cnki.net) 摘要:[目的/意义]基于近邻用户的协同过滤推荐作为推荐系统应用最广泛的算法之一,受数据稀疏和计算可扩展问题影响&#x…...
算法学习系列(十五):最小堆、堆排序
目录 引言一、最小堆概念二、堆排序模板(最小堆)三、模拟堆 引言 这个堆排序的话,考的还挺多的,主要是构建最小堆,并且在很多情况下某些东西还用得着它来优化,比如说迪杰斯特拉算法可以用最小堆优化&#…...
HCIA-Datacom题库(自己整理分类的)——OSPF协议多选
ospf的hello报文功能是 邻居发现 同步路由器的LSDB 更新LSA信息 维持邻居关系 下列关于OSPF区域描述正确的是 在配置OSPF区域正确必须给路由器的loopback接配置IP地址 所有的网络都应在区域0中宣告 骨干区域的编号不能为2 区域的编号范围是从0.0.0.0到255.255.255.255…...
elasticsearch-hadoop.jar 6.8版本编译异常
## 背景 重新编译 elasticsearch-hadoop 包; GitHub - elastic/elasticsearch-hadoop at 6.8 编译 7.17 版本时很正常,注意设置下环境变量就好,JAVA8_HOME/.... 编译 6.8 版本时(要求jdk8 / jdk9),出现…...
面试经典150题(50-53)
leetcode 150道题 计划花两个月时候刷完,今天(第二十二天)完成了4道(50-53)150: 50.(141. 环形链表)题目描述: 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个…...
Jetpack Compose中使用Android View
使用AndroidView创建日历 Composable fun AndroidViewPage() {AndroidView(factory {CalendarView(it)},modifier Modifier.fillMaxWidth(),update {it.setOnDateChangeListener { view, year, month, day ->Toast.makeText(view.context, "${year}年${month 1}月$…...
《MySQL》事务篇
事务特性 ACID Atomicity原子性:事务中的操作要么全部完成,要么全部失败。 Consistency一致性:事务操作前后,数据满足完整性约束。 Isolation隔离性:允许并发执行事务,每个事务都有自己的数据空间&…...
高阶组件和高阶函数是什么
高阶组件和高阶函数都是在函数式编程中常见的概念。 高阶组件(Higher-Order Component, HOC)是一种函数,接受一个组件作为参数,并返回一个新的组件。它可以用来增强现有的组件,给它添加额外的功能或属性。高阶组件在R…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
