数据挖掘 K-Means聚类
未格式化之前的代码:
import pandas as pd#数据处理
from matplotlib import pyplot as plt#绘图
from sklearn.preprocessing import MinMaxScaler#归一化
from sklearn.cluster import KMeans#聚类
import os#处理文件os.environ["OMP_NUM_THREADS"] = '4'df = pd.read_excel("consumption_data.xls", usecols=["R", "F", "M"])#选取了“R”、“F”和“M”三列数据
df.dropna(inplace=True)#将缺失值删除
df_scale = MinMaxScaler().fit_transform(df)#归一化,使得数据在0到1的范围内
model = KMeans(n_clusters=3, random_state=0)#n_clusters参数设置为3,表示要将数据分成3个簇。random_state参数设置为0,以确保每次运行时都得到相同的结果
model.fit(df_scale)#训练模型
core = model.cluster_centers_#通过cluster_centers_属性获取聚类模型中心点的坐标,即每个簇的中心点
df["class"] = model.labels_#将每个数据点的簇标签保存在原始数据集的“class”列中,使用labels_属性获取每个数据点所属的簇的标签fig = plt.figure(figsize=(9, 9))#创建一个大小为9x9的图形窗口
ax = plt.axes(projection='3d')#创建一个3D坐标轴
center_x = []#创建空列表用于存储各个簇的中心点坐标。
center_y = []
center_z = []
for i, j in df.groupby(by="class"):#对数据集按簇标签进行分组ax.scatter3D(j["F"], j["R"], j["M"], label=i)#将每个簇的数据点在3D空间中绘制为散点图center_x.append(j["F"].mean())#计算每个簇的中心点坐标,并将其添加到相应的列表中。center_y.append(j["R"].mean())center_z.append(j["M"].mean())# ax.scatter3D(j["F"].mean(),j["R"].mean(),j["M"].mean(),marker="X") 使用scatter3D()函数将每个簇的中心点坐标(j["F"].mean(), j["R"].mean(), j["M"].mean())以"X"形状的标记绘制在图中。
ax.scatter3D(center_x, center_y, center_z, label='center', marker="X", alpha=1)#以“X”形状的标记绘制簇的中心点。alpha参数设置为1,表示散点图的透明度为完全不透明
plt.legend()#显示图例
plt.show()#显示图形for i, j in df.groupby(by="class"):#对数据集按簇标签进行分组。j[["R", "F", "M"]].plot(kind="kde", subplots=True, sharex=False)#对每个簇的三个特征绘制核密度图。kind="kde"指定绘制核密度图,subplots=True表示将三个子图绘制在同一画布上,sharex=False表示不共享x轴。plt.subplots_adjust(hspace=0.3) # 调整子图的纵向间隙,hspace=0.3将纵向间隔设置为子图高度的30%。这将使得每个子图之间有一定的空白间隔plt.show()#显示图形
格式化之后的代码:
import pandas as pd # 数据处理
from matplotlib import pyplot as plt # 绘图
from sklearn.preprocessing import MinMaxScaler # 归一化
from sklearn.cluster import KMeans # 聚类
import os # 处理文件os.environ["OMP_NUM_THREADS"] = '4'df = pd.read_excel("consumption_data.xls", usecols=["R", "F", "M"]) # 选取了“R”、“F”和“M”三列数据
df.dropna(inplace=True) # 将缺失值删除
df_scale = MinMaxScaler().fit_transform(df) # 归一化,使得数据在0到1的范围内
model = KMeans(n_clusters=3, random_state=0) # n_clusters参数设置为3,表示要将数据分成3个簇。random_state参数设置为0,以确保每次运行时都得到相同的结果
model.fit(df_scale) # 训练模型
core = model.cluster_centers_ # 通过cluster_centers_属性获取聚类模型中心点的坐标,即每个簇的中心点
df["class"] = model.labels_ # 将每个数据点的簇标签保存在原始数据集的“class”列中,使用labels_属性获取每个数据点所属的簇的标签fig = plt.figure(figsize=(9, 9)) # 创建一个大小为9x9的图形窗口
ax = plt.axes(projection='3d') # 创建一个3D坐标轴
center_x = [] # 创建空列表用于存储各个簇的中心点坐标。
center_y = []
center_z = []
for i, j in df.groupby(by="class"): # 对数据集按簇标签进行分组ax.scatter3D(j["F"], j["R"], j["M"], label=i) # 将每个簇的数据点在3D空间中绘制为散点图center_x.append(j["F"].mean()) # 计算每个簇的中心点坐标,并将其添加到相应的列表中。center_y.append(j["R"].mean())center_z.append(j["M"].mean())# ax.scatter3D(j["F"].mean(),j["R"].mean(),j["M"].mean(),marker="X") 使用scatter3D()函数将每个簇的中心点坐标(j["F"].mean(), j["R"].mean(), j["M"].mean())以"X"形状的标记绘制在图中。
ax.scatter3D(center_x, center_y, center_z, label='center', marker="X",alpha=1) # 以“X”形状的标记绘制簇的中心点。alpha参数设置为1,表示散点图的透明度为完全不透明
plt.legend() # 显示图例
plt.show() # 显示图形for i, j in df.groupby(by="class"): # 对数据集按簇标签进行分组。j[["R", "F", "M"]].plot(kind="kde", subplots=True,sharex=False) # 对每个簇的三个特征绘制核密度图。kind="kde"指定绘制核密度图,subplots=True表示将三个子图绘制在同一画布上,sharex=False表示不共享x轴。plt.subplots_adjust(hspace=0.3) # 调整子图的纵向间隙,hspace=0.3将纵向间隔设置为子图高度的30%。这将使得每个子图之间有一定的空白间隔plt.show() # 显示图形
相关文章:
数据挖掘 K-Means聚类
未格式化之前的代码: import pandas as pd#数据处理 from matplotlib import pyplot as plt#绘图 from sklearn.preprocessing import MinMaxScaler#归一化 from sklearn.cluster import KMeans#聚类 import os#处理文件os.environ["OMP_NUM_THREADS"] …...
医疗卫生行业网络安全需求发展
文章目录 一、行业安全建设需求分析1、等级保护2.0合规建设云计算技术大数据技术物联网技术移动互联网技术2、加强医疗数据安全保护加密存储与传输数据加强数据备份与恢复注重数据脱敏与分级保护3、强化网络安全制度管理完善应急预案与响应机制加强网络安全人员管理二、行业新技…...
【Unity热更新】学会AssetsBundle打包、加载、卸载
本教程详细讲解什么是AssetBundle压缩包机制!然后构建 AssetBundle、加载 AssetBundle 以及卸载 AssetBundle 的简要教程。这一个流程就是热更新! AssetBundles 简介 1.什么是AssetBundles? AssetBundles是Unity中一种用于打包和存储资源(如模型、纹理、声音等)的文件格…...
智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.指数分布算法4.实验参数设定5.算法结果6.…...
vue 监听浏览器关闭或刷新事件
vue 监听浏览器关闭或刷新事件 需求 web项目中使用socket时,涉及到关闭刷新浏览器多次连接问题,其中一个解决方法是在关闭或刷新浏览器时,将连接断开。 代码 <script> export default {// 可以在created、beforeMount或mounted生命…...
VuePress-theme-hope 搭建个人博客 2【快速上手】 —— 安装、部署 防止踩坑篇
续👆VuePress、VuePress-theme-hope 搭建个人博客 1【快速上手】 项目常用命令 vuepress dev [dir] 会启动一个开发服务器,以便让你在本地开发你的 VuePress 站点。vuepress build [dir] 会将你的 VuePress 站点构建成静态文件,以便你进行后…...
ClickHouse基础知识(四):ClickHouse 引擎详解
1. 表引擎的使用 表引擎是 ClickHouse 的一大特色。可以说, 表引擎决定了如何存储表的数据。包括: ➢ 数据的存储方式和位置,写到哪里以及从哪里读取数据。 默认存放在/var/lib/clickhouse/data ➢ 支持哪些查询以及如何支持。 ➢ 并发数…...
关于设计模式、Java基础面试题
前言 之前为了准备面试,收集整理了一些面试题。 本篇文章更新时间2023年12月27日。 最新的内容可以看我的原文:https://www.yuque.com/wfzx/ninzck/cbf0cxkrr6s1kniv 设计模式 单例共有几种写法? 细分起来就有9种:懒汉&#x…...
Python爱心光波完整代码
文章目录 环境需求完整代码详细分析环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.blog.csdn.net/arti…...
PowerShell Instal 一键部署gitea
gitea 前言 Gitea 是一个轻量级的 DevOps 平台软件。从开发计划到产品成型的整个软件生命周期,他都能够高效而轻松的帮助团队和开发者。包括 Git 托管、代码审查、团队协作、软件包注册和 CI/CD。它与 GitHub、Bitbucket 和 GitLab 等比较类似。 Gitea 最初是从 Gogs 分支而来…...
C语言——指针题目“指针探测器“
如果你觉得你指针学的自我感觉良好,甚至已经到达了炉火纯青的地步,不妨来试试这道题目? #include<stdio.h> int main() {char* c[] { "ENTER","NEW","POINT","FIRST" };char** cp[] { c 3…...
Hive讲课笔记:内部表与外部表
文章目录 一、导言二、内部表1.1 什么是内部表1.1.1 内部表的定义1.1.2 内部表的关键特性 1.2 创建与操作内部表1.2.1 创建并查看数据库1.2.2 在park数据库里创建student表1.2.3 在student表插入一条记录1.2.4 通过HDFS WebUI查看数据库与表 三、外部表2.1 什么是外部表2.2 创建…...
Docker本地部署开源浏览器Firefox并远程访问进行测试
文章目录 1. 部署Firefox2. 本地访问Firefox3. Linux安装Cpolar4. 配置Firefox公网地址5. 远程访问Firefox6. 固定Firefox公网地址7. 固定地址访问Firefox Firefox是一款免费开源的网页浏览器,由Mozilla基金会开发和维护。它是第一个成功挑战微软Internet Explorer浏…...
PHP:服务器端脚本语言的瑰宝
PHP(Hypertext Preprocessor)是一种广泛应用于服务器端编程的开源脚本语言,它以其简单易学、灵活性和强大的功能而成为Web开发的瑰宝。本文将深入介绍PHP的历史、特性、用途以及与生态系统的关系,为读者提供对这门语言全面的了解。…...
【MySQL】数据库并发控制:悲观锁与乐观锁的深入解析
🍎个人博客:个人主页 🏆个人专栏: 数 据 库 ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 悲观锁(Pessimistic Locking): 乐观锁(Optimistic Locking): 总结&#x…...
作业--day38
1.定义一个Person类,包含私有成员,int *age,string &name,一个Stu类,包含私有成员double *score,Person p1,写出Person类和Stu类的特殊成员函数,并写一个Stu的show函数ÿ…...
pytest 的 fixture 固件机制
一、前置说明 固件(fixture)是一些函数,pytest 会在执行测试函数之前(或之后)加载运行它们。pytest 使用 fixture 固件机制来实现测试的前置和后置操作,可以方便地设置和共享测试环境。 二、操作步骤 1. 编写测试代码 atme/demos/demo_pytest_tutorials/test_pytest_…...
分布式技术之分布式计算Stream模式
文章目录 什么是 Stream?Stream 工作原理Storm 的工作原理 实时性任务主要是针对流数据的处理,对处理时延要求很高,通常需要有常驻服务进程,等待数据的随时到来随时处理,以保证低时延。处理流数据任务的计算模式&#…...
2023年12月GESP Python五级编程题真题解析
【五级编程题1】 【试题名称】:小杨的幸运数 【问题描述】 小杨认为,所有大于等于a的完全平方数都是他的超级幸运数。 小杨还认为,所有超级幸运数的倍数都是他的幸运数。自然地,小杨的所有超级幸运数也都是幸运数。 对于一个…...
探索Apache Commons Imaging处理图像
第1章:引言 大家好,我是小黑,咱们今天来聊聊图像处理。在这个数字化日益增长的时代,图像处理已经成为了一个不可或缺的技能。不论是社交媒体上的照片编辑,还是专业领域的图像分析,图像处理无处不在。而作为…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
数据可视化交互
目录 【实验目的】 【实验原理】 【实验环境】 【实验步骤】 一、安装 pyecharts 二、下载数据 三、实验任务 实验 1:AQI 横向对比条形图 代码说明: 运行结果: 实验 2:AQI 等级分布饼图 实验 3:多城市 AQI…...
Razor编程中@Helper的用法大全
文章目录 第一章:Helper基础概念1.1 Helper的定义与作用1.2 Helper的基本语法结构1.3 Helper与HtmlHelper的区别 第二章:基础Helper用法2.1 无参数Helper2.2 带简单参数的Helper2.3 带默认值的参数2.4 使用模型作为参数 第三章:高级Helper用法…...
JVM——对象模型:JVM对象的内部机制和存在方式是怎样的?
引入 在Java的编程宇宙中,“Everything is object”是最核心的哲学纲领。当我们写下new Book()这样简单的代码时,JVM正在幕后构建一个复杂而精妙的“数据实体”——对象。这个看似普通的对象,实则是JVM内存管理、类型系统和多态机制的基石。…...
