当前位置: 首页 > news >正文

002文章解读与程序——中国电机工程学报EI\CSCD\北大核心《计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化》已提供下载资源

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

摘要:为应对源端可再生能源及荷端负荷需求的随机性波动对综合能源生产单元(integratedenergyproductionunit,IEPU)运行调度及容量配置问题带来的挑战,该文提出一种两阶段随机优化方法。首先,在底层运行优化问题中,通过建立各设备模型及约束条件,提出基于混合整数线性规划(mixed integer linear programming,MILP)的最小成本求解方法;其次,利用蒙特卡洛模拟生成多种随机场景,确定系统在给定容量配置条件下的成本期望;最后,在顶层容量配置优化问题中,以系统容量为决策变量,采用遗传算法调用蒙特卡洛模拟及MILP运行优化算法,实现使IEPU系统全生命周期成本最小的最优容量配置。优化结果表明:底层运行优化中储气的接入使弃光量和碳排放量分别减少5.49%和0.35%,顶层计及源荷不确定性的电力设备容量提升20%左右,更加接近实际场景,验证了所提出方法的有效性。结合参数灵敏度分析,可为IEPU系统的规模化设计提供参考。

这段摘要描述了一种应对可再生能源波动和负荷需求不确定性对综合能源生产单元(IEPU)运行和容量配置带来挑战的方法。以下是对摘要中关键内容的详细解读:

  1. 问题背景和动机:

    • 可再生能源波动性: 描述了源端可再生能源的波动性,这可能是由太阳能和风能等可再生能源的不稳定性引起的。
    • 负荷需求不确定性: 强调了负荷需求的随机性波动,这可能是由用户需求变化等因素引起的。
  2. 提出的方法:

    • 两阶段随机优化方法: 方法包括两个主要阶段,旨在解决底层运行优化问题和顶层容量配置优化问题。
    • 底层运行优化问题: 使用混合整数线性规划(MILP)方法,通过建立各设备模型和约束条件,以最小成本为目标解决问题。
    • 蒙特卡洛模拟: 在第二阶段,通过蒙特卡洛模拟生成多种随机场景,确定系统在给定容量配置条件下的成本期望。
  3. 顶层容量配置优化问题:

    • 遗传算法: 使用遗传算法作为顶层容量配置的优化工具,决策变量为系统容量。
    • 调用蒙特卡洛模拟和MILP: 通过调用蒙特卡洛模拟和MILP运行优化算法,以实现全生命周期成本最小的最优容量配置。
  4. 优化结果:

    • 底层运行优化结果: 储气的接入减少了弃光量和碳排放量,表明底层优化对系统性能有积极影响。
    • 顶层容量配置优化结果: 电力设备容量提升,更接近实际场景,证明了方法的有效性。
  5. 结论和展望:

    • 有效性验证: 通过对优化结果的验证,说明了提出方法的有效性。
    • 参数灵敏度分析: 结合参数灵敏度分析,为IEPU系统的规模化设计提供参考。

综合而言,这项研究旨在通过两阶段的随机优化方法解决IEPU系统的运行和容量配置问题,以适应可再生能源和负荷需求的不确定性。通过底层运行优化和顶层容量配置优化,研究者提出的方法在考虑系统全生命周期成本的前提下,取得了一系列积极的优化结果。

论文模型展示:=

论文部分程序代码展示:

%%  初始化设备参数及运行变量
addpath('..\光照强度与电负荷生成');
load('IPV1');  load('IPV2'); load('IPV3'); load('IPV4'); load('IPV5'); load('IPV6');   
load('Eload1');  load('Eload2'); load('Eload3'); load('Eload4'); load('Eload5'); load('Eload6');
It = [IPV1,IPV2,IPV3,IPV4,IPV5,IPV6];
Edemand = [Eload1,Eload2,Eload3,Eload4,Eload5,Eload6]; %电负荷
load('Nday'); %各典型日频次   
nday = [Nday(1)*ones(1,24),Nday(2)*ones(1,24),Nday(3)*ones(1,24),Nday(4)*ones(1,24),Nday(5)*ones(1,24),Nday(6)*ones(1,24)];
%% 以下,注意是把六个典型日的约束一起写,维度是24*6
T = 24*6;   
T = 24*6; 
%% 1.1.1光伏设备模型 
E_PVmppt = sdpvar(1,T);  %光伏板mppt发电功率
A_PV = sdpvar(1,1);  %光伏板面积/m2
k = 0.200;  %1平方米的光伏板1000w/m2的标准电功率为200w
E_PVr = sdpvar(1,1);  %光伏板额定发电功率
ita_PV = 0.200/1000;
%文章内写了两个E_PV,有错位,本代码将其改为E_PVmppt与E_PV
E_PV = sdpvar(1,T);  %光伏板有效发电功率
E_PV_cur = sdpvar(1,T);  %弃光功率
%后文算例中出现135MW的光伏容量配置结果,那么这里的限值就算用300MW吧,即300 000kW.
E_PVr_max = 300000;  %光伏板额定发电功率.kW
%之后,这里直接将约束也写上,省的再回头来写约束了。
C=[];
C=[C, E_PVr ==  A_PV*k,E_PVmppt == E_PVr*ita_PV/k*It,E_PVmppt == E_PV + E_PV_cur,0<=E_PVr,E_PVr<=E_PVr_max,%补充E_PV >= 0,E_PV_cur >= 0,A_PV >= 0, 
];
%% 1.1.2 CCS 模型   
V_CO2_PGU = sdpvar(1,T);  %火电机组的二氧化碳排放量
E_PGU = sdpvar(1,T);  %火电机组发电功率
e_PGU = 0.46;   %火电机组的二氧化碳排放强度,见表1的 0.46 N.m3CO2/kW.h
ita_CCS_max = 0.65;%碳捕集效率最大值  0.65 
V_CO2_CCSmax = sdpvar(1,T); %碳捕集最大功率(体积)
V_CO2_CCS = sdpvar(1,T); %实际碳捕集功率(体积)
V_CO2_cur = sdpvar(1,T); %碳捕集功率耗散部分功率(体积)
lamdaCO2 = 0.1937;   %碳捕集功率耗电系数 kW.h/N.m3CO2
E_CCS = sdpvar(1,T); %碳捕集耗电功率
%从图5可以找出火电机组的最大出力功率180MW,最大爬坡常出现在119时刻与162时刻的正负50MW
%火电机组的最小出力功率90MW,
%表1中给出的火电机组容量为300000kW
E_PGUmax = 300000;  %kW
E_PGUmin = 90000;   %kW
dita_E_PGUmax = 50000;%kW
dita_E_PGUmin = -50000;%kW
E_PGUmax = 300000;  %kW
E_PGUmin = 90000;   %kW
dita_E_PGUmax = 50000;%kW
dita_E_PGUmin = -50000;%kW
%从图7可知CO2捕集的最大功率是23000m3每小时
%由此计算碳捕集的最大电功率为 0.1937*23000 = 4.4551e+03 kW
E_CCSmax = 4.4551e+03; %kW
C=[C,V_CO2_PGU == e_PGU*E_PGU,V_CO2_CCSmax == ita_CCS_max*V_CO2_PGU,V_CO2_CCSmax == V_CO2_CCS + V_CO2_cur,E_CCS == lamdaCO2*V_CO2_CCS,E_PGUmin<=E_PGU,E_PGU<=E_PGUmax,dita_E_PGUmin<=E_PGU(2:T)-E_PGU(1:T-1),E_PGU(2:T)-E_PGU(1:T-1)<=dita_E_PGUmax,dita_E_PGUmin<=E_PGU(1:T-1)-E_PGU(2:T),E_PGU(1:T-1)-E_PGU(2:T)<=dita_E_PGUmax,0<=E_CCS,E_CCS<=E_CCSmax,%补充V_CO2_CCS >= 0,V_CO2_cur >= 0,];

展示效果:

相关文章:

002文章解读与程序——中国电机工程学报EI\CSCD\北大核心《计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化》已提供下载资源

&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;&#x1f446;下载资源链接&#x1f4…...

Typora快捷键设置详细教程

文章目录 一、快捷键设置步骤二、设置快捷键简单案例参考资料 一、快捷键设置步骤 在typora软件中&#xff0c;快捷键的设置步骤主要为&#xff1a; 打开【文件】–>【偏好设置】&#xff0c;找到【通用】–>【打开高级设置】&#xff0c;找到 conf.user.json 文件。 然…...

《异常检测——从经典算法到深度学习》25 基于深度隔离林的异常检测算法

《异常检测——从经典算法到深度学习》 0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: …...

第7章 1 异常处理

bug的由来及分类 p81 字符串形式表示的数字之间也可以比较大小 import re ageinput(年龄&#xff1a;) if age>18:print(age)列表的append操作每次只能添加一个元素&#xff1a; lst[] lst.append(A) lst.append(B) # lst.append(A,B) 错误python中的异常处理机制 p82 t…...

昇腾910平台安装驱动、固件、CANN toolkit、pytorch

本文使用的昇腾910平台操作系统是openEuler&#xff0c;之前没了解过&#xff0c;不过暂时感觉用起来和centOS差不多。系统架构是ARM&#xff0c;安装包基本都是带aarch64字样&#xff0c;注意和x86_64区别开&#xff0c;别下错了。 安装依赖 cmake 通过yum安装的cmake版本较…...

【数据挖掘】模型融合

模型融合是指将多个不同的机器学习模型组合起来&#xff0c;通过综合多个模型的预测结果来得到更准确的预测结果。模型融合可以提高模型的鲁棒性&#xff0c;减小模型的方差&#xff0c;提高模型的泛化能力。 常见的模型融合方法包括平均法、投票法和堆叠法。 平均法(Averagin…...

DM、Oracle、GaussDB、Kingbase8(人大金仓数据库)和HIVE给列增加注释

DM数据库给列增加注释 1、创建表 CREATE TABLE test222 ( id int NOT NULL PRIMARY KEY, name varchar(1000) DEFAULT NULL, email varchar(1000) DEFAULT NULL, phone varchar(1000) DEFAULT NULL ) 2、给列添加注释 comment on column TEST222.NAME is 这是一个列注释; 例如…...

C语言实例_stdlib.h库函数功能及其用法详解

一、前言 C语言作为一种高效、灵活的编程语言&#xff0c;标准库的使用对于开发人员来说是不可或缺的。其中&#xff0c;stdlib.h是C语言中一个重要的标准库头文件&#xff0c;提供了许多常用的函数和工具&#xff0c;以便开发人员能够更加便捷地进行内存管理、字符串处理、随…...

Error in onLoad hook: “URIError: URI malformed“ found in…报错处理以及完善uniapp针对对象传参

使用uniapp传参的过程中遇到这么一个问题&#xff0c;当我们需要传整个对象作为参数时&#xff0c;我会先将这个对象先编码&#xff0c;然后再解码&#xff0c;从而获取到怎么参数&#xff0c;平常实操的时候也没有遇到过问题&#xff0c;但是今天测试的时候&#xff0c;刚好一…...

c语言-位操作符练习题

文章目录 前言一、n&(n-1)的运用场景(n为整数)二、&1 和 >>的应用场景总结 前言 本篇文章介绍利用c语言的位操作符解决一些练习题&#xff0c;目的是掌握各个位操作符的使用和应用场景。 表1.1为c语言中的位操作符 操作符含义&按位与|按位或^按位异或~按位…...

园林机械部件自动化三维测量检测形位公差-CASAIM自动化三维检测工作站

随着园林机械的广泛应用&#xff0c;对其机械部件的精确测量需求也日益增加。传统的测量方法不仅效率低下&#xff0c;而且精度难以保证&#xff0c;因此&#xff0c;自动化三维测量技术成为了解决这一问题的有效途径。本文将重点介绍CASAIM自动化三维检测工作站在园林机械部件…...

o2o生活通全开源尊享版+多城市切换+企业付款+交友IM+平台快报

搭建教程 1.把 pigo2ov282.sql 文件里面的网址 test.souho.net 全部批量替换为你的自己的 2.使用 phpmyadmin 导入 pigo2ov282.sql 到你的数据库&#xff08;直接访问/phpmyadmin 即可&#xff09; 3.修改数据库文件/conf/db.php 里的数据库连接信息&#xff08;请勿使用记事本…...

UE4开发BIM程序 的 流程

某机构BIM设计研究中心主任马晓龙&#xff0c;他对编程颇有研究。今天他会用通俗易懂的语言来讲解基于游戏引擎UE4的BIM技术可视化应用。对于想要自己开发程序的设计师一定要读一下&#xff01; 1&#xff09;关于UE4——UE4是什么&#xff1f; 可以简单的理解为&#xff0c;一…...

【AI大语言模型】ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的应用

以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮&#xff0c;可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…...

【面试题】写一个睡眠函数

题目要求 请你编写一个异步函数&#xff0c;它接收一个正整数参数 millis &#xff0c;并休眠 millis 毫秒。要求此函数可以解析任何值。 示例 1&#xff1a; 输入&#xff1a;millis 100 输出&#xff1a;100 解释&#xff1a; 在 100ms 后此异步函数执行完时返回一个 Pro…...

4. 云原生之kubesphere基础服务搭建

文章目录 安装kubesphere插件服务暴露NodePort方式LoadBalancer方式安装 OpenELB部署eip资源配置网关启动网关创建路由测试网关路由ingress高级功能在服务中配置LoadBalancer 基础设施部署服务部署建议helm仓库添加helm仓库 运维相关部署gitlab部署nexus3部署harbor 研发相关 安…...

思福迪运维安全管理系统 任意文件读取漏洞

产品简介 思福迪运维安全管理系统是思福迪开发的一款运维安全管理堡垒机 漏洞概述 由于思福迪运维安全管理系统 GetCaCert路由存在任意文件读取漏洞&#xff0c;攻击者可通过该漏洞在服务器端读取任意文件敏感内容&#xff0c;可能导致攻击者后续获取到相关的服务器权限 资…...

OCR在审核应用落地

本文字数&#xff1a;6686字 预计阅读时间&#xff1a;35分钟 01 背景 1、业务背景 在传统视频审核场景中&#xff0c;审核人员需要对进审视频中的文字内容进行逐一审核&#xff0c;避免在文字上出现敏感词、违禁词或者广告等相关词汇。这种人工审核费时费力&#xff0c;并且由…...

借贷协议 Tonka Finance:铭文资产流动性的新破局者

“Tonka Finance 是铭文赛道中首个借贷协议&#xff0c;它正在为铭文资产赋予捕获流动性的能力&#xff0c;并为其构建全新的金融场景。” 在 2023 年的 1 月&#xff0c;比特币 Ordinals 协议被推出后&#xff0c;包括 BRC20&#xff0c;Ordinals 等在内的系列铭文资产在包括比…...

Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头

程序示例精选 PythonYolov5Qt交通标志特征识别窗体界面相片视频摄像头 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonYolov5Qt交通标志特征识别窗体界面相片视频摄像头》编写代码&a…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...

算法—栈系列

一&#xff1a;删除字符串中的所有相邻重复项 class Solution { public:string removeDuplicates(string s) {stack<char> st;for(int i 0; i < s.size(); i){char target s[i];if(!st.empty() && target st.top())st.pop();elsest.push(s[i]);}string ret…...