【AI大语言模型】ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的应用
以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。
点击查看原文
专题一、开启大模型
1 开启大模型
1) 大模型的发展历程与最新功能
2) 大模型的算法构架与底层逻辑
3) 大模型的强大功能与应用场景
4) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)
5) 如何优雅使用大模型
案例1.1:开启不同平台的大模型
案例1.2:GPT不同版本的使用
案例1.3:大模型文件上传和处理
专题二、基于ChatGPT大模型提问框架
2 提问框架(提示词、指令)
1) 专业大模型提示词,助你小白变专家
2) 超实用的通用提示词和提问框架
3) 高级提问技巧
案例2.1:设定角色与投喂规则
案例2.2:行业专家指令合集
案例2.3:角色扮演与不同角度提问
案例2.4:分步提问与上下文关联
案例2.5:经典提问框架练习,提升模型效率
专题三、基于ChatGPT大模型的数据清洗
3 基于ChatGPT的数据清洗
1) R语言和Python基础(勿需学会,能看懂即可)
2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)
案例3.1:使用大模型指令随机生成数据
案例3.2:使用大模型指令读取数据
案例3.3:使用大模型指令进行数据清洗
案例3.4:使用大模型指令对农业气象数据进行预处理
案例3.5:使用大模型指令对生态数据进行预处理
专题四、基于ChatGPT大模型的统计分析
4 基于AI大模型的统计分析
1) 统计假设检验
2) 统计学三大常用检验及其应用场景
3) 方差分析、相关分析、回归分析
4) 混合线性模型
5) Meta分析
案例4.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验
案例4.2:使用大模型进行t检验、F检验和卡方检验
案例4.3:使用大模型指令对生态环境数据进行方差分析、相关分析及回归分析
案例4.4:使用大模型指令构建混合线性模型
案例4.5:使用大模型指令对文献收集数据进行Meta分析
专题五、基于ChatGPT大模型的机器学习
5 基于AI大模型的机器/深度学习(无需代码基础即可实现)
1) 机器/深度学习
2) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)
3) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优
4) 深度学习算法(神经网络、激活函数、交叉熵、优化器)
5) Pytorch基础
6) 卷积神经网络、长短期记忆网络(LSTM)
案例5.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)
案例5.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)
案例5.3:使用大模型指令构建降维模型
案例5.4:使用大模型指令构建聚类模型
案例5.5:使用大模型指令构建深度学习模型,预测气象数据
案例5.6:使用大模型指令构建深度学习模型,进行图像识别
专题六、基于ChatGPT大模型的科研绘图
6 基于AI大模型的科研绘图
1) 使用大模型进行数据可视化
案例6.1:大模型科研绘图指定全集
案例6.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、环形热图、气泡图、森林图、三元图等各类科研图
案例6.3:使用大模型指令对图形进行修改
专题七、基于ChatGPT大模型的GIS应用
7 基于AI大模型的GIS应用
1) 使用大模型进行空间数据处理
2) 使用大模型训练降尺度模型
3) 使用大模型绘制矢量图
4) 使用大模型绘制栅格图
案例7.1:使用大模型绘制全球地图
案例7.2:使用大模型绘制NASA气象数据分布图
案例7.3:使用大模型绘制全球植被类型分布图
案例7.4:使用大模型绘制全球植被生物量图
案例7.5:使用大模型处理遥感数据并绘图
专题八、基于基于ChatGPT大模型的论文助手
8 基于AI大模型的论文助手
案例8.1:大模型论文润色指令大全
案例8.2:使用大模型进行论文润色
案例8.3:使用大模型对英文文献进行搜索
案例8.4:使用大模型对英文文献进行问答和辅助阅读
案例8.5:使用大模型提取英文文献关键信息
案例8.6:使用大模型对论文进行摘要重写
案例8.7:使用大模型取一个好的论文标题
案例8.8:使用大模型写论文框架
案例8.9:使用大模型对论文进行翻译
案例8.10:使用大模型对论文进行评论,辅助撰写审稿意见
案例8.11:使用大模型对论文进行降重
案例8.12:使用大模型查找研究热点
案例8.13:使用大模型对你的论文凝练成新闻和微信文案
案例8.14:使用大模型辅助专著、教材、课件的撰写
专题九、基于基于ChatGPT大模型的项目基金助手
9 基于AI大模型的项目基金助手
1) 基金申请讲解
2) 基因申请助手
案例9.1:使用大模型进行项目选题
案例9.2:使用大模型进行项目书语言润色
案例9.3:使用大模型进行项目书图表制作
专题十、基于大模型的AI绘图
10基于大模型的AI绘图
GPT、Midjourney、Stable Diffusion生成图片讲解及环境部署
1) AI画图指令介绍
案例10.1:使用大模型进行图像识别
案例10.2:使用大模型生成图像指令合集
案例10.3:使用大模型指令生成概念图
案例10.4:使用大模型指令生成地球氮循环概念图
案例10.5:使用大模型指令生成土壤概念图
案例10.6:使用大模型指令生成病毒、植物、动物细胞结构图
案例10.7:使用大模型指令生成概念图图片素材
点击查看原文
相关文章:

【AI大语言模型】ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的应用
以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…...
【面试题】写一个睡眠函数
题目要求 请你编写一个异步函数,它接收一个正整数参数 millis ,并休眠 millis 毫秒。要求此函数可以解析任何值。 示例 1: 输入:millis 100 输出:100 解释: 在 100ms 后此异步函数执行完时返回一个 Pro…...

4. 云原生之kubesphere基础服务搭建
文章目录 安装kubesphere插件服务暴露NodePort方式LoadBalancer方式安装 OpenELB部署eip资源配置网关启动网关创建路由测试网关路由ingress高级功能在服务中配置LoadBalancer 基础设施部署服务部署建议helm仓库添加helm仓库 运维相关部署gitlab部署nexus3部署harbor 研发相关 安…...

思福迪运维安全管理系统 任意文件读取漏洞
产品简介 思福迪运维安全管理系统是思福迪开发的一款运维安全管理堡垒机 漏洞概述 由于思福迪运维安全管理系统 GetCaCert路由存在任意文件读取漏洞,攻击者可通过该漏洞在服务器端读取任意文件敏感内容,可能导致攻击者后续获取到相关的服务器权限 资…...

OCR在审核应用落地
本文字数:6686字 预计阅读时间:35分钟 01 背景 1、业务背景 在传统视频审核场景中,审核人员需要对进审视频中的文字内容进行逐一审核,避免在文字上出现敏感词、违禁词或者广告等相关词汇。这种人工审核费时费力,并且由…...

借贷协议 Tonka Finance:铭文资产流动性的新破局者
“Tonka Finance 是铭文赛道中首个借贷协议,它正在为铭文资产赋予捕获流动性的能力,并为其构建全新的金融场景。” 在 2023 年的 1 月,比特币 Ordinals 协议被推出后,包括 BRC20,Ordinals 等在内的系列铭文资产在包括比…...

Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头
程序示例精选 PythonYolov5Qt交通标志特征识别窗体界面相片视频摄像头 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《PythonYolov5Qt交通标志特征识别窗体界面相片视频摄像头》编写代码&a…...

浅谈高并发以及三大利器:缓存、限流和降级
引言 高并发背景 互联网行业迅速发展,用户量剧增,系统面临巨大的并发请求压力。 软件系统有三个追求:高性能、高并发、高可用,俗称三高。三者既有区别也有联系,门门道道很多,全面讨论需要三天三夜&#…...

深入ArkUI:深入实战组件text和text input
文章目录 Text组件介绍Text组件的属性方法Text:文本显示组件4.3TextInput组件实战案例:图片宽度控制页面本文总结要点回顾在今天的课程中,我们将深入学习ArkUI提供的基础组件,着重探讨text和text input两个组件。 Text组件介绍 Text组件是一个用于显示文本的组件,其主要作…...
WPF 基础(Binding 二)
续接上文,本章继续讲解WPF Binding相关知识,主要内容是绑定的模式和绑定源(Source) 5绑定模式 在使用Binding类的时候有4中绑定模式可以选择 BindingMode TwoWay导致对源属性或目标属性的更改可自动更新对方。此绑定类型适用于…...
限制el-upload组件的上传文件大小
限制el-upload组件的上传文件大小 <el-upload :before-upload"handleBeforeUpload"><!-- 其他组件内容 --> </el-upload>Vue实例中定义handleBeforeUpload方法来进行文件大小的验证。你可以使用file.size属性来获取文件的大小,并与你期…...

什么是爬虫,为什么爬虫会导致服务器负载跑满
在我们日常使用服务器的过程中,经常会有遇到各种各样的问题。今天就有遇到用户来跟德迅云安全反馈自己服务器负载跑满,给用户详细排查后也未发现异常,抓包查看也没有明显攻击特征,后续查看发现是被爬虫爬了,调整处理好…...

线上隐私保护的未来:分布式身份DID的潜力
在日益数字化的世界中,人们的生活越来越多地依赖于互联网,数字身份也因而变得越来越重要。根据法律规定,互联网应用需要确认用户的真实身份才能提供各种服务,而用户则希望在进行身份认证的同时能够尽量保护他们的个人隐私…...

服务器被入侵后如何查询连接IP以及防护措施
目前越来越多的服务器被入侵,以及攻击事件频频的发生,像数据被窃取,数据库被篡改,网站被强制跳转到恶意网站上,网站在百度的快照被劫持等等的攻击症状层出不穷,在这些问题中,如何有效、准确地追…...

【开源】基于Vue+SpringBoot的公司货物订单管理系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 客户管理模块2.2 商品维护模块2.3 供应商管理模块2.4 订单管理模块 三、系统展示四、核心代码4.1 查询供应商信息4.2 新增商品信息4.3 查询客户信息4.4 新增订单信息4.5 添加跟进子订单 五、免责说明 一、摘要 1.1 项目…...

2023-12-29 服务器开发-Centos部署LNMP环境
摘要: 2023-12-29 服务器开发-Centos部署LNMP环境 centos7.2搭建LNMP具体步骤 1.配置防火墙 CentOS 7.0以上的系统默认使用的是firewall作为防火墙, 关闭firewall: systemctl stop firewalld.service #停止firewall systemctl disable fire…...

CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017
一、5种算法简介 1、差分进化算法DE 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem defini…...

数字身份验证:跨境电商如何应对账户安全挑战?
在数字化时代,随着跨境电商的蓬勃发展,账户安全问题逐渐成为行业和消费者关注的焦点。随着网络犯罪日益猖獗,用户的数字身份安全面临着更加复杂的威胁。本文将深入探讨数字身份验证在跨境电商中的重要性,并探讨各种创新技术和策略…...

Nature | 大型语言模型(LLM)能够发现和产生新知识吗?
大型语言模型(LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。通…...

C# 使用ZXing.Net生成二维码和条码
写在前面 条码生成是一个经常需要处理的功能,本文介绍一个条码处理类库,ZXing用Java实现的多种格式的一维二维条码图像处理库,而ZXing.Net是其.Net版本的实现。 在WinForm下使用该类库需要从NuGet安装两个组件: ZXing.Net ZXing…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
【实施指南】Android客户端HTTPS双向认证实施指南
🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...
day51 python CBAM注意力
目录 一、CBAM 模块简介 二、CBAM 模块的实现 (一)通道注意力模块 (二)空间注意力模块 (三)CBAM 模块的组合 三、CBAM 模块的特性 四、CBAM 模块在 CNN 中的应用 一、CBAM 模块简介 在之前的探索中…...

联邦学习带宽资源分配
带宽资源分配是指在网络中如何合理分配有限的带宽资源,以满足各个通信任务和用户的需求,尤其是在多用户共享带宽的情况下,如何确保各个设备或用户的通信需求得到高效且公平的满足。带宽是网络中的一个重要资源,通常指的是单位时间…...