当前位置: 首页 > news >正文

(self-supervised learning)Event Camera Data Pre-training

Publisher: ICCV 2023 

MOTIVATION OF READING: 自监督学习、稀疏事件 = NILM

link: https://arxiv.org/pdf/2301.01928.pdf

Code: GitHub - Yan98/Event-Camera-Data-Pre-training


1. Overview

Contributions are summarized as follows:

1. A self-supervised framework for event camera data pre-training. The pre-trained model can be transferred to diverse downstream tasks;

2. A family of event data augmentations, generating meaningful event images;

3. A conditional masking strategy, sampling informative event patches for network training;

4. An embedding projection loss, using paired RGB embeddings to regularize event embeddings to avoid model collapse;

5. A probability distribution alignment loss for aligning embeddings from the paired event and RGB images.

6. We achieve state-of-the-art performance in standard event benchmark datasets.

2. Related work

The SSL frameworks can be generally divided into two categories: contrastive learning and masked modeling.

2.1 Contrastive learning

This approach generally assumes augmentation invariance of images. one notable drawback
of contrastive learning is suffering from model collapse and training instability.

2.2 Masked modeling

Reconstructing masked inputs from the (i. e., unmasked) visible ones is a popular selfsupervised
learning objective motivated by the idea of autoencoding. (Bert, GPT)

3. Methodology

For pre-training, our method takes event data E and its paired natural RGB image I as inputs, and outputs a pre-trained network fe.

Firstly, consecutively perform data augmentations, event image generation, and conditional masking to obtain two patch sets (xq, xk).

Secondly, fe extracts features from event patch set xq, and he_img and he_evt separately project features from fe to latent embeddings q_img and q_evt.

fm and hm_evt are the momentum of fe and he_evt, and are updated by the exponential moving average (EMA). (momentum的含义可以参考MOCO论文)

The momentum network takes patch set xk as input and generates an embedding k_evt.

At the same time, the natural RGB image I is embeded into y = f1(h1(I)).

Finally, we perform event discrimination, and event and natural RGB image discrimination to train our model. 这里不用INFONCE直接对q_evt和k_evt进行相似度计算是因为这么做会导致embedding collapse使得embedding过于相似。原因是事件图像是稀疏离散。因此使用RGB图像的映射。

L_evt is an event embedding projection loss aiming to pull together paired event embeddings qevt and kevt, for event discrimination.

L_RGB aims to pull together paired event and RGB embeddings q_evt and y, for event and natural RGB image discrimination.

L_k1 aims to drive fe learning discriminative event embeddings, towards well-structured embedding space of natural RGB images.


InfoNCE loss Contrastive learning aims to pull together embeddings q and k+, and pushes away embeddings q and {k−}.

Event embedding projection loss

ζ(v1, v2) is the projection function.

Event and RGB image discrimination

Considering the sparsity of the event image, a single event image is less informative than an RGB image, possessing difficulty for self-supervised event network training.

We pull together embeddings of paired event and RGB images, xq and I.

we first compute the pairwise embedding similarity and then fit an exponential kernel to the similarities to compute probability scores. The probability score of the (i, j)-th pair is given by,

Our probability distribution alignment loss is given by,

Total Loss

where λ1 is a hyper-parameter for balancing the losses.

4. Experiment

We evaluate our method on three downstream tasks: object recognition, optical flow estimation, and semantic segmentation.

相关文章:

(self-supervised learning)Event Camera Data Pre-training

Publisher: ICCV 2023 MOTIVATION OF READING: 自监督学习、稀疏事件 NILM link: https://arxiv.org/pdf/2301.01928.pdf Code: GitHub - Yan98/Event-Camera-Data-Pre-training 1. Overview Contributions are summarized as follows: 1. A self-supervised framework f…...

关于个人Git学习记录及相关

前言 可以看一下猴子都能懂的git入门,图文并茂不枯燥 猴子都能懂的git入门 学习东西还是建议尽可能的去看官方文档 权威且详细 官方文档 强烈建议看一下GitHub漫游指南及开源指北,可以对开源深入了解一下,打开新世界的大门! …...

【eclipse】eclipse开发springboot项目使用入门

下载eclipse Eclipse downloads - Select a mirror | The Eclipse Foundation 安装eclipse 其他一步一步即可 我们是开发java web选择如下 界面修改 Window->Preferences-> 修改eclipse风格主题 Window->Preferences->General->Appearance 修改字体和大小…...

Android 13 默认关闭 快速打开相机

介绍 在设置菜单的手势界面里,快速打开相机是默认开启的,此功能当开启时连续点击两次电源键会打开相机,现在客户需要默认关闭。 效果展示 修改 这里一开始想到的就是配置文件,在路径下果然找到了,从注释中看使我们需要的&#x…...

pytest pytest-html优化样式

conftest.py import pytest from pytest_metadata.plugin import metadata_keydef pytest_html_report_title(report):report.title"接口测试报告"def pytest_configure(config):# 获取命令行参数中的测试环境、测试版本、开始时间、测试人员config.stash[metadata_…...

Visual Studio 配置DLL

我们在用Visual Studio进行开发时,如果没有正确配置DLL,就会出现类似“丢失***.dll”的错误。DLL配置有哪些方法? 1、手动复制 将dll文件拷贝到生成的.exe所在的文件夹里 2、配置环境 在右键属性->配置属性->调试->环境&#xf…...

C/C++转WebAssembly及微信小程序调用

上一篇文章讲了C/C如何转WebAssembly,并测试了在Web端调用。本篇内容和上篇一样,介绍C/C包转的.wasm包如何在小程序中调用。 说明 本篇是在上一篇步骤1-4的基础上,再做修改,供微信小程序端调用的方法和步骤。 本篇操作手册可以…...

【WPF.NET开发】弱事件模式

本文内容 先决条件为什么要实现弱事件模式?应该由谁实现弱事件模式?如何实现弱事件模式 在应用程序中,附加到事件源的处理程序可能不会与将处理程序附加到源的侦听器对象一同销毁。 这种情况下会导致内存泄漏。 Windows Presentation Found…...

[Angular] 笔记 16:模板驱动表单 - 选择框与选项

油管视频: Select & Option (Template Driven Forms) Select & Option 在 pokemon.ts 中新增 interface: export interface Pokemon {id: number;name: string;type: string;isCool: boolean;isStylish: boolean;acceptTerms: boolean; }// new interface…...

Webpack基础使用

目录 一.什么是Webpack 二.为什么要使用Webpack 三.Webpack的使用 1.下载yarn包管理器 2.Webpack的安装 3.Webpack的简单使用 4.效果 四.Webpack打包流程 一.什么是Webpack Webpack是一个静态模块打包工具 二.为什么要使用Webpack 在开发中,我们常常会遇到…...

扭蛋机小程序搭建:打造互联网“流量池”

随着互联网科技的发展,扭蛋机小程序成为了市场发展的重要力量。 扭蛋机市从日本发展流行起来的,玩法就是根据设置的概率,让玩家体验扭蛋机的乐趣。扭蛋机中有隐藏款和稀有款,为了获得稀有款商品,玩家便会进行扭蛋&…...

解决VNC连接Ubuntu服务器打开终端出现闪退情况

服务器环境 阿里云ECS服务器 操作系统:Ubuntu 20.0.4 如何使用VNC连接阿里云ECS服务器 1.阿里云官方指导:通过VNC搭建Ubuntu 18.04和20.04图形界面 2.新手入门ECS——ubuntu 20.04安装图形化界面和本地VNC连接 问题描述 使用VNC连接上新申请阿里云服…...

flutter是什么

“flutter” 是一种移动应用开发框架,由谷歌开发和维护。Flutter 可用于构建高性能、美观且跨平台的移动应用程序,它支持同时在多个平台上运行,包括: iOS:可以构建原生的iOS应用。 Android:可以构建原生的…...

GET和POST请求

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、GET请求二、POST请求三.幂等性是什么总结 前言 GET和POST是HTTP协议中的两种常见的请求方法,它们定义了客户端与服务器之间进行通信时的不同方…...

基于电商场景的高并发RocketMQ实战-Broker写入读取流程性能优化总结、Broker基于Pull模式的主从复制原理

🌈🌈🌈🌈🌈🌈🌈🌈 【11来了】文章导读地址:点击查看文章导读! 🍁🍁🍁🍁🍁🍁&#x1f3…...

前端DApp开发利器,Ant Design Web3 正式发布 1.0

在介绍 Ant Design Web3 之前,先简单说说 Web3 DApp(去中心化应用)。DApp 可以说是除了 AI 应用外当下最受前端独立开发者青睐的应用了。当然,在 ChatGPT 还没有火的时候,Web3 DApp 才是最火的。因为通过一个连接区块链的 DApp(去中心化应用)你可以获得如下能力: 💰交…...

[RoarCTF 2019]Easy Java(java web)

题目 页面如下 页面长得像sql注入 点击help看一下 这里需要了解java web目录结构 WEB INF:Java的web应用安全目录; 此外如果想在页面访问WEB-INF应用里面的文件,必须要通过web.xml进行相应的映射才能访问; WEB-INF是Java Web应用程序中的一…...

Abaqus许可管理策略

随着全球化和数字化的发展,知识产权和许可管理成为了企业成功的关键因素之一。在这样的背景下,Abaqus许可管理策略应运而生,为企业提供了一个全面、灵活和可扩展的解决方案,帮助企业掌控业务许可,实现增长与合规。 Ab…...

对采集到的温湿度数据,使用python进行数据清洗,并使用预测模型进行预测未来一段时间的温湿度数据。

使用Python对传感器采集到的数据进行数据清洗和预测未来一段时间的温湿度数据,您可以按照以下步骤进行操作: 导入必要的库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model …...

嵌入式SOC之通用图像处理之OSD文字信息叠加的相关实践记录

机缘巧合 机缘巧合下, 在爱芯元智的xx开发板下进行sdk的开发.由于开发板目前我拿到是当前最新的一版(估计是样品),暂不公开开发板具体型号信息.以下简称板子 .很多优秀的芯片厂商,都会提供与开发板配套的完善的软件以及完善的技术支持(FAE),突然觉得爱芯…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...