直方图与均衡化
直方图
统计图像中相同像素点的数量。
使用cv2.calcHist(images, channels, mask, histSize, ranges)函数
images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。
channels:同样用中括号括起来,告诉我们统幅图像的直方图,如果图像是灰度图就是[0],如果是彩色图可以是[0],[1],[2],分别对应BGR。
mask:掩膜图像,统幅图像使用None,若使用一部分需要自行制作。
histSize:BIN的数目,也要中括号。
ranges:像素值范围一般为[0,256]
灰度图
img = cv2.imread('deppb.jpg', 0)
show.cv_show('img', img)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
h1 = hist.shape
plt.hist(img.ravel(), 256)
plt.show()
灰度图

直方图

彩色图
img2 = cv2.imread('deppb.jpg')
show.cv_show('img2', img2)
color = ('b', 'g', 'r')
for i, col in enumerate(color):histr = cv2.calcHist([img2], [i], None, [256], [0, 256])plt.plot(histr, color=col)plt.xlim([0, 256])
plt.show()
彩色图

直方图

图为三通道的直方图
mask操作
mask,在指定区域置为255,其余区域置为0,与原图相与,最后得到指定区域的像素点个数统计,绘制直方图。
# 创建mask
show.cv_show('img2', img2) # 原图
mask = np.zeros(img2.shape[:2], np.uint8)
print(mask.shape)
mask[200: 600, 100: 427] = 255
show.cv_show('mask', mask) # mask图masked_img2 = cv2.bitwise_and(img2, img2, mask=mask)
show.cv_show('masked_img2', masked_img2) # 原图与maskhist_full = cv2.calcHist([img2], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img2], [0], mask, [256], [0, 256])
plt.plot(hist_full), plt.plot(hist_mask) # [0]通道直方图对比
plt.show()
mask图

mask与原图相与

[0]通道直方图对比

蓝色为整体直方图,橙色为特定区域直方图。
均衡化
将一副图像的直方图分布通过累积分布函数变成近似均匀分布,从而增强图像的对比度。

根据像素点个数得到概率值,再算出累积概率类似于分布函数,再由累积概率映射出新的像素值,最后取整。
img3 = cv2.imread('deppb.jpg', 0)
plt.hist(img3.ravel(), 256) # 原图直方图
plt.show()equ = cv2.equalizeHist(img3)
plt.hist(equ.ravel(), 256) # 均衡化后直方图
plt.show()res = np.hstack((img3, equ))
show.cv_show('res', res) # 图像对比



可以看到整体均衡化可能导致部分信息丢失。
自适应均衡化
其实是分区域进行均衡化,减少信息丢失。
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # 方法
res_clahe = clahe.apply(img3)
plt.hist(res_clahe.ravel(), 256) # 自适应均衡化后直方图
plt.show()
res = np.hstack((img3, equ, res_clahe)) # 与原图和整体均衡化对比
show.cv_show('res', res)
自适应均衡化的直方图

对比图

可以看到对比度加强而且信息丢失得到改善。
相关文章:
直方图与均衡化
直方图 统计图像中相同像素点的数量。 使用cv2.calcHist(images, channels, mask, histSize, ranges)函数 images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。 channels:同样用中括号括起来ÿ…...
Java——猫猫图鉴微信小程序(前后端分离版)
目录 一、开源项目 二、项目来源 三、使用框架 四、小程序功能 1、用户功能 2、管理员功能 五、使用docker快速部署 六、更新信息 审核说明 一、开源项目 猫咪信息点-ruoyi-cat: 1、一直想做点项目进行学习与练手,所以做了一个对自己来说可以完成的…...
PiflowX组件-ReadFromKafka
ReadFromKafka组件 组件说明 从kafka中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号分隔的Ka…...
Ubuntu 安装MySQL以及基本使用
前言 MySQL是一个开源数据库管理系统,通常作为流行的LAMP(Linux,Apache,MySQL,PHP / Python / Perl)堆栈的一部分安装。它使用关系数据库和SQL(结构化查询语言)来管理其数据。 安装…...
基于Freeswitch实现的Volte网视频通知应用
现在运营商的Volte网络已经很好的支持视频通话了,因此在原来的电话语音通知的基础上,可以更进一步实现视频的通知,让用户有更好的体验,本文就从技术角度,基于Freeswitch来实现此类应用(本文假设读者已对Fre…...
怎么实现Servlet的自动加载
在实际开发时,有时候会希望某些Servlet程序可以在Tomcat启动时随即启动。但在默认情况下,第一次访问servlet的时候,才创建servlet对象。 如果servlet构造函数里面的代码或者init方法里面的代码比较多,就会导致用户第一次访问serv…...
15. Mysql 变量的使用
目录 变量的概述自定义变量系统变量查看系统变量系统变量赋值 局部变量总结参考资料 变量的概述 MySQL支持不同类型的变量,包括自定义变量、系统变量和局部变量。自定义变量是在会话中定义的变量,用于存储临时数据。系统变量是MySQL服务器提供的全局变量…...
为什么ChatGPT采用SSE协议而不是Websocket?
在探索ChatGPT的使用过程中,我们发现GPT采用了流式数据返回的方式。理论上,这种情况可以通过全双工通信协议实现持久化连接,或者依赖于基于EventStream的事件流。然而,ChatGPT选择了后者,也就是本文即将深入探讨的SSE&…...
Elasticsearch:使用 ELSER v2 文本扩展进行语义搜索
Elastic 提供了一个强大的 ELSER 供我们进行语义搜索。ELSER 是一种稀疏向量的搜索方法。我们无需对它做任何的微调及训练。它是一种 out-of-domain 的模型。目前它仅对英文进行支持。希望将来它能对其它的语言支持的更好。更多关于 ELSER 的知识,请参阅文章 “Elas…...
Matlab:BP神经网络算法,二叉决策树
1、BP神经网络算法 (1)步骤 1.准备训练数据和目标值 2.创建并配置BP神经网络模型 3.训练BP神经网络模型 4.用BP神经网络模型预测数据 例:某企业第一年度营业额为132468,第二年度为158948,第三年度为183737,预测第四年度的营…...
Python实现员工管理系统(Django页面版 ) 七
各位小伙伴们好久不见,2024年即将到来,小编在这里提前祝大家新的一年快快乐乐,能够事业有成,学习顺心,家庭和睦,事事顺利。 今天我们本篇要实现的是一个登录界面的实现,其实登录界面的实现看着挺…...
听GPT 讲Rust源代码--src/tools(34)
File: rust/src/tools/clippy/clippy_lints/src/collection_is_never_read.rs 文件"collection_is_never_read.rs"位于Rust源代码中的clippy_lints工具中,其作用是检查在集合类型(如Vec、HashMap等)的实例上执行的操作是否被忽略了…...
k8s的陈述式资源管理(命令行操作)
(一)k8s的陈述式资源管理 1、命令行:kubectl命令行工具——用于一般的资源管理 (1)优点:90%以上ce场景都可以满足 (2)特点:对资源的增、删、查比较方便,对…...
uniapp uview裁剪组件源码修改(u-avatar-cropper),裁出可自定义固定大小图片
u-avatar-cropper修改后 <template><view class"index"><!-- {{userinfo}} --><view class"top"><view class"bg"><image src"../../static/electronic_card/bg.png"></image></view&g…...
【机器学习前置知识】Beta分布
Beta分布与二项分布的关系 Beta分布与二项分布密切相关,由二项分布扩展而来,它是用来描述一个连续型随机变量出现的概率的概率密度分布,表示为 X X X~ B e t a ( a , b ) Beta(a,b) Beta(a,b) , a 、 b a、b a、b 是形状参数。Beta分布本质上也是一个概率密度函数,只是这…...
Notepad++批量更改文件编码格式及文档格式
背景: 在项目中遇到Windows平台VS的MSVC编译不识别Unix下UTF-8编码导致的编译失败问题。需要将Unix下的UTF-8转为UTF-8-BOM格式。网上找了些方式,之后又深入探究了下文档转换的可能性,共享给大家。(当然Windows和Unix平台代码格式…...
Linux驱动开发学习笔记6《蜂鸣器实验》
目录 一、蜂鸣器驱动原理 二、硬件原理分析 三、实验程序编写 1、 修改设备树文件 (1)添加pinctrl节点 (2)添加BEEP设备节点 (3)检查PIN 是否被其他外设使用 2、蜂鸣器驱动程序编写 3、编写测试AP…...
鸿蒙(HarmonyOS 3.1) DevEco Studio 3.1开发环境汉化
鸿蒙(HarmonyOS 3.1) DevEco Studio 3.1开发环境汉化 一、安装环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、设置过程 打开IDE,在第一个菜单File 中找到Settings...菜单 在Setting...中找到Plugins…...
毫米波雷达:从 3D 走向 4D
1 毫米波雷达已广泛应用于汽车 ADAS 系统 汽车智能驾驶需要感知层、决策层、执行层三大核心系统的高效配合,其中感知层通过传感器探知周围的环境。汽车智能驾驶感知层将真实世界的视觉、物理、事件等信息转变成数字信号,为车辆了解周边环境、制定驾驶操…...
CENTOS docker拉取私服镜像
概述 docker的应用越来越多,安装部署越来越方便,批量自动化的镜像生成和发布都需要docker镜像的拉取。 centos6版本太老,docker的使用过程中问题较多,centos7相对简单容易。 本文档主要介绍centos系统安装docker和拉取docker私…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
