当前位置: 首页 > news >正文

深度学习-【语义分割】学习笔记4 膨胀卷积(Dilated convolution)

文章目录

  • 膨胀卷积
    • 为什么需要膨胀卷积
  • gridding effect
    • 连续使用三次膨胀卷积——1
    • 连续使用三次膨胀卷积——2
    • 连续使用三次膨胀卷积——3
  • Understanding Convolution for Semantic Segmentation

膨胀卷积

膨胀卷积,又叫空洞卷积。


左边是普通卷积,右边是膨胀卷积。
r 表示间隙,即膨胀因子。(当 r = 1时就是普通卷积)

一般使用过程中, 输入和输出特征图的高和宽是不会发生变化的。

复习:N = (W - F + 2P)/ S + 1

为什么需要膨胀卷积

在语义分割任务中,通常会使用分类网络作为backbone,在backbone中会对图片进行一系列的下采样。通过backbone之后,会使用一系列的上采样恢复原来的图片大小。如果特征图的高宽下采样倍率太大的话,还原到原来尺寸后,图片将丢失很多细节信息。

例如,在VGG网络中,通过max pooling层进行池化,这降低了特征图的高度和宽度,也丢失了一些细节信息,而丢失的信息无法通过上采样进行还原,在语义分割任务中将导致分割的效果不理想。而如果去掉max pooling层,将导致特征图的感受野变小。

利用膨胀卷积,既能增大感受野,又能保持输入输出特征图的高和宽不发生变化,解决了上述问题。但是,是否无脑堆叠膨胀卷积就可以了呢?

参考论文Understanding Convolution for Semantic Segmentation,在膨胀卷积使用过程中,会出现gridding effect的问题。


gridding effect

首先了解 什么是 gridding effect 问题:
在这里插入图片描述

连续使用三次膨胀卷积——1

layer4上中心点使用各个点的信息的次数:
在这里插入图片描述
这就是gridding effect现象,即layer4上的一个像素并没有利用到这个范围内所有像素点的信息,而是有间隔的。(这就会导致一些细节上信息的丢失)。


连续使用三次膨胀卷积——2

与实验一不同的是,第一个膨胀卷积的膨胀因子为1,也就是普通卷积。
在这里插入图片描述
这里一个像素点使用的信息已经是某个范围内全部像素点的信息了。
感受野(RF,receptive field)= 13 × 13


连续使用三次膨胀卷积——3

连续使用三个普通卷积。

在这里插入图片描述
感受野(RF,receptive field)= 7 × 7

实验 2 和 3 对比,可以发现使用膨胀卷积在参数数量相同的情况下可以使感受野变大很多。


Understanding Convolution for Semantic Segmentation

@article{PanquWang2018UnderstandingCF, title={Understanding Convolution for Semantic Segmentation}, author={Panqu Wang and Pengfei Chen and Ye Yuan and Ding Liu and Zehua Huang and Xiaodi Hou and Garrison W. Cottrell}, journal={Workshop on Applications of Computer Vision}, year={2018}}

https://readpaper.com/paper/2592939477
在这里插入图片描述
Mi 表示第 i 层两个非零元素(即被使用到的像素)之间的最大距离。
设计原则1:需要 M2 <= K。

[1,2,5]
在这里插入图片描述

[1,2,9]
在这里插入图片描述


在这里插入图片描述
设计原则2:锯齿状膨胀因子设置,如[1,2,3,1,2,3]


在这里插入图片描述

设计原则3:公约数不能大于1
[2,4,8]
在这里插入图片描述


结果对比:

在这里插入图片描述


参考资料:
https://blog.csdn.net/Zen_of_code/article/details/127536998
https://www.bilibili.com/video/BV1Bf4y1g7j8/

相关文章:

深度学习-【语义分割】学习笔记4 膨胀卷积(Dilated convolution)

文章目录膨胀卷积为什么需要膨胀卷积gridding effect连续使用三次膨胀卷积——1连续使用三次膨胀卷积——2连续使用三次膨胀卷积——3Understanding Convolution for Semantic Segmentation膨胀卷积 膨胀卷积&#xff0c;又叫空洞卷积。 左边是普通卷积&#xff0c;右边是膨胀…...

【10】SCI易中期刊推荐——工程技术-计算机:人工智能(中科院2区)

🚀🚀🚀NEW!!!SCI易中期刊推荐栏目来啦 ~ 📚🍀 SCI即《科学引文索引》(Science Citation Index, SCI),是1961年由美国科学信息研究所(Institute for Scientific Information, ISI)创办的文献检索工具,创始人是美国著名情报专家尤金加菲尔德(Eugene Garfield…...

模电计算反馈系数,有时候转化为计算电阻分压的问题

模电计算反馈系数&#xff0c;有时候转化为计算电阻分压的问题 如果是电压反馈&#xff0c;F的除数是Uo 如果是电流反馈&#xff0c;F的除数是Io 串联反馈&#xff0c;F的分子是Uf 并联反馈&#xff0c;F的分子是If 点个赞呗&#xff0c;大家一起加油学习&#xff01;...

专治Java底子差,不要再认为泛型就是一对尖括号了

文章目录一、泛型1.1 泛型概述1.2 集合泛型的使用1.2.1 未使用泛型1.2.2 使用泛型1.3 泛型类1.3.1 泛型类的使用1.2.2 泛型类的继承1.4 泛型方法1.5 泛型通配符1.5.1 通配符的使用1&#xff09;参数列表带有泛型2&#xff09;泛型通配符1.5.2 泛型上下边界1.6 泛型的擦除1.6.1 …...

PayPal轮询收款的那些事儿

想必做跨境电商独立站的小伙伴&#xff0c;对于PayPal是再熟悉不过了&#xff0c;PayPal是一个跨国际贸易的支付平台&#xff0c;对于做独立站的朋友来说跨境收款绝大部分都是依赖PayPal以及Stripe条纹了。简单来说PayPal跟国内的支付宝有点类似&#xff0c;但是PayPal它是跨国…...

【Linux】项目自动化构建工具——make/Makefile

目录 1.make与Makefile的关系 Makefile make 项目清理 clean .PHONY 当我们编写一个较大的软件项目时&#xff0c;通常需要将多个源文件编译成可执行程序或库文件。为了简化这个过程&#xff0c;我们可以使用 make 工具和 Makefile 文件。Makefile 文件可以帮助我们自动…...

成本降低90%,OpenAI正式开放ChαtGΡΤ

今天凌晨&#xff0c;OpenAI官方发布ChαtGΡΤ和Whisper的接囗&#xff0c;开发人员现在可以通过API使用最新的文本生成和语音转文本功能。OpenAI称&#xff1a;通过一系列系统级优化&#xff0c;自去年12月以来&#xff0c;ChαtGΡΤ的成本降低了90%&#xff1b;现在OpenAI用…...

hls.js如何播放m3u8文件(实例)?

HLS&#xff08;HTTP Live Streaming&#xff09;是一种视频流传输协议&#xff0c;是苹果推出的适用于iOS与macOS平台的流媒体传输协议。它将视频分割成若干个小段&#xff0c;每个小段大小一般为2~10秒不等&#xff0c;并通过HTTP协议进行传输。通过在每个小段之间插入若干秒…...

大数据平台建设方法论集合

文章目录从0到1建设大数据解决方案大数据集群的方法论数据集成方法论机器学习算法平台方法论BI建设的方法论云原生大数据的方法论低代码数据中台的方法论大数据SRE运维方法论批流一体化建设的方法论数据治理的方法论湖仓一体化建设的方法论数据分析挖掘方法论数字化转型方法论数…...

25- 卷积神经网络(CNN)原理 (TensorFlow系列) (深度学习)

知识要点 卷积神经网络的几个主要结构: 卷积层&#xff08;Convolutions&#xff09;: Valid :不填充&#xff0c;也就是最终大小为卷积后的大小. Same&#xff1a;输出大小与原图大小一致&#xff0c;那么N ​变成了​N2P. padding-零填充. 池化层&#xff08;Subsampli…...

把数组里面数值排成最小的数

问题描述&#xff1a;输入一个正整数数组&#xff0c;将它们连接起来排成一个数&#xff0c;输出能排出的所有数字中最小的一个。例如输入数组{12, 567}&#xff0c;则输出这两个能排成的最小数字12567。请给出解决问题的算法&#xff0c;并证明该算法。 思路&#xff1a;先将…...

云his系统源码 SaaS应用 基于Angular+Nginx+Java+Spring开发

云his系统源码 SaaS应用 功能易扩 统一对外接口管理 一、系统概述&#xff1a; 本套云HIS系统采用主流成熟技术开发&#xff0c;软件结构简洁、代码规范易阅读&#xff0c;SaaS应用&#xff0c;全浏览器访问前后端分离&#xff0c;多服务协同&#xff0c;服务可拆分&#xff…...

小红书场景营销怎么做?场景营销主要模式有哪些

小红书作为新兴媒体领域的佼佼者&#xff0c;凭借着生动&#xff0c;直观&#xff0c;代入感等元素的分享推荐收揽了巨额的流量。但是&#xff0c;随着时代的脚步逐渐加快&#xff0c;发展和变革随之涌来&#xff0c;传统的营销已经无法满足。所以场景营销就出现了。今天就来和…...

c++基础——数组

数组数组是存放相同类型对象的容器&#xff0c;数组中存放的对象没有名字&#xff0c;而是要通过其所在的位置访问。数组的大小是固定的&#xff0c;不能随意改变数组的长度。定义数组数组的声明形如 a[b]&#xff0c;其中&#xff0c;a 是数组的名字&#xff0c;b 是数组中元素…...

odoo15 登录界面的标题自定义

odoo15 登录界面的标题自定义 原代码中查询:<title>Odoo<title> <html> <head><meta http-equiv="content-type" content="text/html; charset=utf-8" /><title>Odoo</title><link rel="shortcut icon…...

【内网服务通过跳板机和公网通信】花生壳内网穿透+Nginx内网转发+mqtt服务搭建

问题&#xff1a;服务不能暴露公网 客户的主机不能连外网&#xff0c;服务MQTT服务部署在内网。记做&#xff1a;p1 (computer 1)堡垒机&#xff08;跳板机&#xff09;可以连外网&#xff0c;内网IP 和 MQTT服务在同一个网段。记做&#xff1a;p2 (computer 2)对他人而言&…...

【多线程常见面试题】

谈谈 volatile关键字的用法? volatile能够保证内存可见性,强制从主内存中读取数据,此时如果有其他线程修改被volatile修饰的变量,可以第一时间读取到最新的值 Java多线程是如何实现数据共享的? JVM把内存分成了这几个区域: 方法区,堆区,栈区,程序计数器&#xff1b; 其中堆区…...

深度剖析指针(下)——“C”

各位CSDN的uu们你们好呀&#xff0c;今天小雅兰的内容还是我们的指针呀&#xff0c;上两篇博客我们基本上已经把知识点过了一遍&#xff0c;这篇博客就让小雅兰来带大家看一些和指针有关的题目吧&#xff0c;现在&#xff0c;就让我们进入指针的世界吧 复习&#xff1a; 数组和…...

爬虫与反爬虫技术简介

互联网的大数据时代的来临&#xff0c;网络爬虫也成了互联网中一个重要行业&#xff0c;它是一种自动获取网页数据信息的爬虫程序&#xff0c;是网站搜索引擎的重要组成部分。通过爬虫&#xff0c;可以获取自己想要的相关数据信息&#xff0c;让爬虫协助自己的工作&#xff0c;…...

Pag的2D渲染执行流程

Pag的渲染 背景 根据Pag文章里面说的&#xff0c;Pag之前长时间使用的Skia库作为底层渲染引擎。但由于Skia库体积过大&#xff0c;为了保证通用型&#xff08;比如兼容CPU渲染&#xff09;做了很多额外的事情。所以Pag的工程师们自己实现了一套2D图形框架替换掉Skia&#xff…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...