当前位置: 首页 > news >正文

证明:切线垂直于半径

证明:

切线垂直于过切点的半径。

下面是网上最简单的证明方法。

证明:
利用反证法。
如下图所示,直线AB和圆O切于点A,假设OA 不垂直于 AB,而 O B ⊥ A B OB \perp AB OBAB,则 ∠ O B A = 90 ° \angle OBA = 90 \degree OBA=90°,根据勾股定理可得斜边最长,即边OA>边OB ,但是实际上直线和圆的交点只有一个交点A,OA是半径而OB应该比半径长,因而假设不成立。

在这里插入图片描述

相关文章:

证明:切线垂直于半径

证明: 切线垂直于过切点的半径。 下面是网上最简单的证明方法。 证明: 利用反证法。 如下图所示,直线AB和圆O切于点A,假设OA 不垂直于 AB,而 O B ⊥ A B OB \perp AB OB⊥AB,则 ∠ O B A 90 \angle OB…...

普中STM32-PZ6806L开发板(STM32CubeMX创建项目并点亮LED灯)

简介 搭建一个用于驱动 STM32F103ZET6 GPIO点亮LED灯的任务;电路原理图 LED电路原理图 芯片引脚连接LED驱动引脚原理图 创建一个点亮LED灯的Keil 5项目 创建STM32CubeMX项目 New Project -> 单击 -> 芯片搜索STM32F103ZET6->双击创建 初始化时钟 调试设置 一…...

【Windows】共享文件夹拍照还原防火墙设置(入站,出站设置)---图文并茂详细讲解

目录 一 共享文件夹(两种形式) 1.1 普通共享与高级共享区别 1.2 使用 二 拍照还原 2.1 是什么 2.2 使用 三 防火墙设置(入栈,出站设置) 3.1 引入 3.2 入站出站设置 3.2.1入站出站含义 3.3入站设置 3.4安装jdk 3.5使用tomcat进行访…...

1.决策树

目录 1. 什么是决策树? 2. 决策树的原理 2.1 如何构建决策树? 2.2 构建决策树的数据算法 2.2.1 信息熵 2.2.2 ID3算法 2.2.2.1 信息的定义 2.2.2.2 信息增益 2.2.2.3 ID3算法举例 2.2.2.4 ID3算法优缺点 2.2.3 C4.5算法 2.2.3.1 C4.5算法举例 2.2.4 CART算法 2.2.4…...

基于微信小程序的停车预约系统设计与实现

基于微信小程序的停车预约系统设计与实现 项目概述 本项目旨在结合微信小程序、后台Spring Boot和MySQL数据库,打造一套高效便捷的停车预约系统。用户通过微信小程序进行注册、登录、预约停车位等操作,而管理员和超级管理员则可通过后台管理系统对停车…...

再见2023,你好2024

再见2023,你好2024 生活1月 悲伤与治愈2~4月 运动与偏爱5月 体验与美食6月 婚礼与热爱7~8月 就医与别离9~11月 陪伴与暖房12月 体验&新生 运动追剧读书总结 生活 生活是一个修罗场,来世间一场,要经历丰腴有趣的人生。去体验各种滋味&…...

年度总结|存储随笔2023年度最受欢迎文章榜单TOP15-part1

原创 古猫先生 存储随笔 2023-12-31 08:31 发表于上海 回首2023 2-8月份有近半年时间基本处于断更状态 好在8月份后小编没有松懈 (虽然2023年度总结,更像是近4个月总结) 本年度顺利加V啦! 感谢各位粉丝朋友的一路支持与陪伴 …...

微信小程序 手机号授权登录 偶尔后端解密失败

微信小程序wx.login获取code要在手机号授权前触发 <button:id"code":open-type"hasGetPrivacySetting ? getPhoneNumber|agreePrivacyAuthorization : getPhoneNumber"getphonenumber"onGetPhoneNumber"class"btn"click"cli…...

Mysql 容易忘的 sql 指令总结

目录 一、操作数据库的基本指令 二、查询语句的指令 1、基本查询语句 2、模糊查询 3、分支查询 4、 分组查询 5、分组查询 6、基本查询总结&#xff1a; 7、子查询 8、连接查询 三、MySQL中的常用函数 1、时间函数 2、字符串函数 3、聚合函数 4、运算函数 四、表…...

【SD】tile 模型 - 固定衣服 生成人物 ☑

原理1&#xff1a;tile re 生成固定衣服的人物 tile1-1 re1-1 原理2&#xff1a;tile re 生成随机衣服的人物 tile0.5-1 re0.5-1 原理3&#xff1a;更改动作 必须使用衣服LORA 才可以进行穿衣服 测试大模型&#xff1a;###最爱的模型\meinamix_meinaV11.safe…...

StackOverflowError的JVM处理方式

背景&#xff1a; 事情来源于生产的一个异常日志 Caused by: java.lang.StackOverflowError: null at java.util.stream.Collectors.lambda$groupingBy$45(Collectors.java:908) at java.util.stream.ReduceOps$3ReducingSink.accept(ReduceOps.java:169) at java.util.ArrayL…...

基于DFA算法实现敏感词过滤

何为DFA DFA&#xff0c;全称为Deterministic Finite Automaton&#xff0c;即确定有穷自动机、确定有限状态自动机或确定有限自动机 对于一个给定的属于该自动机的状态和一个属于该自动机字母表Σ的字符&#xff0c;它都能根据事先给定的转移函数转移到下一个状态&#xff0…...

模式识别与机器学习-无监督学习-聚类

无监督学习-聚类 监督学习&无监督学习K-meansK-means聚类的优点&#xff1a;K-means的局限性&#xff1a;解决方案&#xff1a; 高斯混合模型&#xff08;Gaussian Mixture Models&#xff0c;GMM&#xff09;多维高斯分布的概率密度函数&#xff1a;高斯混合模型&#xff…...

Python中property特性属性是什么

在Java中&#xff0c;通常在类中定义的成员变量为私有变量&#xff0c;在类的实例中不能直接通过对象.属性直接操作&#xff0c;而是要通过getter和setter来操作私有变量。 而在Python中&#xff0c;因为有property这个概念&#xff0c;所以不需要写getter和setter一堆重复的代…...

vue3 全局配置Axios实例

目录 前言 配置Axios实例 页面使用 总结 前言 Axios 是一个基于 Promise 的 HTTP 客户端&#xff0c;用于浏览器和 Node.js 环境。它提供了一种简单、一致的 API 来处理HTTP请求&#xff0c;支持请求和响应的拦截、转换、取消请求等功能。关于它的作用&#xff1a; 发起 HTTP …...

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.【EI级】 Matlab实现TCN-BiGRU-Mult…...

WeNet语音识别分词制作词云图

在线体验 ,点击识别语音需要等待一会&#xff0c;文件太大缓存会报错 介绍 本篇博客将介绍如何使用 Streamlit、jieba、wenet 和其他 Python 库&#xff0c;结合语音识别&#xff08;WeNet&#xff09;和词云生成&#xff0c;构建一个功能丰富的应用程序。我们将深入了解代码…...

Proxyman:现代本地Web调试代理工具

1. 简介 1.1 什么是Proxyman&#xff1f; Proxyman是一款专为macOS设计的现代本地Web调试代理工具&#xff0c;它不仅支持macOS平台&#xff0c;还能无缝地与iOS和Android设备进行集成。作为一个网络调试工具&#xff0c;Proxyman的设计旨在提供高性能、直观且功能丰富的解决…...

k8s中DaemonSet实战详解

一、DaemonSet介绍 DaemonSet 的主要作用&#xff0c;是在 Kubernetes 集群里&#xff0c;运行一个 Daemon Pod。DaemonSet 只管理 Pod 对象&#xff0c;然后通过 nodeAffinity 和 Toleration 这两个调度器参数的功能&#xff0c;保证了每个节点上有且只有一个 Pod。 二、Daem…...

信号处理设计模式

问题 如何编写信号安全的应用程序&#xff1f; Linux 应用程序安全性讨论 场景一&#xff1a;不需要处理信号 应用程序实现单一功能&#xff0c;不需要关注信号 如&#xff1a;数据处理程序&#xff0c;文件加密程序&#xff0c;科学计算程序 场景二&#xff1a;需要处理信…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...