当前位置: 首页 > news >正文

机器学习系列13:通过随机森林获取特征重要性

我们已经知道通过 L1 正则化和 SBS 算法可以用来做特征选择。

我们还可以通过随机森林从数据集中选择相关的特征。随机森林里面包含了多棵决策树,我们可以通过计算特征在每棵决策树决策过程中所产生的的信息增益平均值来衡量该特征的重要性。

你可能需要参考:《机器学习系列06:决策树》

这种方法无需对特征做归一化或者标准化预处理,也不假设数据集是否线性可分。

以红酒数据集为例。我们可以直接通过 feature_importances_ 属性获取每个特征的重要性,所有特征重要性之和为 1.0。

图片

我们可以更直观地可视化观察一下。

图片

可以看到上面随机森林选出的前 3 个特征最重要的特征中有 2 也出现在了之前在
《机器学习系列12:减少过拟合——降维(特征选择)》中使用 SFS 算法选择的 3 个最重要的特征中。

图片

我们可以通过 scikit-learn 提供的 SelectFromModel 来通过 threshold 参数设定一个阈值 ,选择满足这个贡献度阈值的特征出来。

图片

可以看到选择了 5 个特征,现在我们就用这 5 个特征拟合一下 kNN 算法。

图片

可以对比一下在用 SFS 算法选择的 3 个特征拟合的 kNN 算法。

图片

选择 5 个特征时,模型在训练集和测试集上的表现和选择全部特征的表现相当!

相关文章:

机器学习系列13:通过随机森林获取特征重要性

我们已经知道通过 L1 正则化和 SBS 算法可以用来做特征选择。 我们还可以通过随机森林从数据集中选择相关的特征。随机森林里面包含了多棵决策树,我们可以通过计算特征在每棵决策树决策过程中所产生的的信息增益平均值来衡量该特征的重要性。 你可能需要参考&…...

flink中值得监控的几个指标

背景 为了维持flink的正常运行,对flink的日常监控就变得很重要,本文我们就来看一下flink中要监控的几个重要的指标 重要的监控指标 1.算子的处理速度的指标:numRecordsInPerSecond/numRecordsOutPerSecond,这有助于你了解到算子的是否正在…...

最优化方法Python计算:无约束优化应用——逻辑分类模型

逻辑回归模型更多地用于如下例所示判断或分类场景。 例1 某银行的贷款用户数据如下表: 欠款(元)收入(元)是否逾期17000800Yes220002500No350003000Yes440004000No520003800No 显然,客户是否逾期&#xff…...

springboot定时执行某个任务

springboot定时执行某个任务 要定时执行的方法加上Schedule注解 括号内跟 cron表达式 “ 30 15 10 * * ?” 代表秒 分 时 日 月 周几 启动类上加上EnableScheduling 注释...

Java EE Servlet之Servlet API详解

文章目录 1. HttpServlet1.1 核心方法 2. HttpServletRequest3. HttpServletResponse 接下来我们来学习 Servlet API 里面的详细情况 1. HttpServlet 写一个 Servlet 代码,都是要继承这个类,重写里面的方法 Servlet 这里的代码,只需要继承…...

neo4j运维管理

管理数据库 概念 Neo4j 5(从v4.0),可以同时创建和使用多个活动数据库。 DBMS Neo4j是一个数据库管理系统(DBMS),能够管理多个数据库。DBMS可以管理一个独立的服务器,也可以管理集群中的一组服务器。 实例 Neo4j实例是运行Neo4j服务器代…...

【MYSQL】-函数

💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...

传统船检已经过时?AR智慧船检来助力!!

想象一下,在茫茫大海中,一艘巨型货轮正缓缓驶过。船上的工程师戴着一副先进的AR眼镜,他们不再需要反复翻阅厚重的手册,一切所需信息都实时显示在眼前。这不是科幻电影的场景,而是智慧船检技术带来的现实变革。那么问题…...

JAVA进化史: JDK11特性及说明

JDK 11(Java Development Kit 11)是Java平台的一个版本,于2018年9月发布。这个版本引入了一些新特性和改进,以下是其中一些主要特性。 HTTP Client(标准化) JDK 11引入了一个新的HTTP客户端,用…...

模型 安索夫矩阵

本系列文章 主要是 分享模型,涉及各个领域,重在提升认知。产品市场战略。 1 安索夫矩阵的应用 1.1 江小白的多样化经营策略 使用安索夫矩阵来分析江小白市场战略。具体如下: 根据安索夫矩阵,江小白的现有产品是其白酒产品&…...

性能手机新标杆,一加 Ace 3 发布会定档 1 月 4 日

12 月 27 日,一加宣布将于 1 月 4 日发布新品一加 Ace 3。一加 Ace 系列秉持「产品力优先」理念,从一加 Ace 2、一加 Ace 2V 到一加 Ace 2 Pro,款款都是现象级爆品,得到了广大用户的认可与支持。作为一加 2024 开年之作&#xff0…...

Vue 框架前导:详解 Ajax

Ajax Ajax 是异步的 JavaScript 和 XML。简单来说就是使用 XMLHttpRequest 对象和服务器通信。可以使用 JSON、XML、HTML 和 text 文本格式来发送和接收数据。具有异步的特性,可在不刷新页面的情况下实现和服务器的通信,交换数据或者更新页面 01. 体验 A…...

3分钟快速安装 ClickHouse、配置服务、设置密码和远程登录以及修改数据目录

下面是一个完整的 ClickHouse 安装和配置流程,包括安装 ClickHouse、配置服务、设置密码和远程登录以及修改数据目录。 安装 ClickHouse 安装 YUM 工具包: sudo yum install -y yum-utils添加 ClickHouse YUM 仓库: sudo yum-config-manager…...

PHP8使用PDO对象增删改查MySql数据库

PDO简介 PDO(PHP Data Objects)是一个PHP扩展,它提供了一个数据库访问层,允许开发人员使用统一的接口访问各种数据库。PDO 提供了一种用于执行查询和获取结果的简单而一致的API。 以下是PDO的一些主要特点: 统一接口…...

证明:切线垂直于半径

证明: 切线垂直于过切点的半径。 下面是网上最简单的证明方法。 证明: 利用反证法。 如下图所示,直线AB和圆O切于点A,假设OA 不垂直于 AB,而 O B ⊥ A B OB \perp AB OB⊥AB,则 ∠ O B A 90 \angle OB…...

普中STM32-PZ6806L开发板(STM32CubeMX创建项目并点亮LED灯)

简介 搭建一个用于驱动 STM32F103ZET6 GPIO点亮LED灯的任务;电路原理图 LED电路原理图 芯片引脚连接LED驱动引脚原理图 创建一个点亮LED灯的Keil 5项目 创建STM32CubeMX项目 New Project -> 单击 -> 芯片搜索STM32F103ZET6->双击创建 初始化时钟 调试设置 一…...

【Windows】共享文件夹拍照还原防火墙设置(入站,出站设置)---图文并茂详细讲解

目录 一 共享文件夹(两种形式) 1.1 普通共享与高级共享区别 1.2 使用 二 拍照还原 2.1 是什么 2.2 使用 三 防火墙设置(入栈,出站设置) 3.1 引入 3.2 入站出站设置 3.2.1入站出站含义 3.3入站设置 3.4安装jdk 3.5使用tomcat进行访…...

1.决策树

目录 1. 什么是决策树? 2. 决策树的原理 2.1 如何构建决策树? 2.2 构建决策树的数据算法 2.2.1 信息熵 2.2.2 ID3算法 2.2.2.1 信息的定义 2.2.2.2 信息增益 2.2.2.3 ID3算法举例 2.2.2.4 ID3算法优缺点 2.2.3 C4.5算法 2.2.3.1 C4.5算法举例 2.2.4 CART算法 2.2.4…...

基于微信小程序的停车预约系统设计与实现

基于微信小程序的停车预约系统设计与实现 项目概述 本项目旨在结合微信小程序、后台Spring Boot和MySQL数据库,打造一套高效便捷的停车预约系统。用户通过微信小程序进行注册、登录、预约停车位等操作,而管理员和超级管理员则可通过后台管理系统对停车…...

再见2023,你好2024

再见2023,你好2024 生活1月 悲伤与治愈2~4月 运动与偏爱5月 体验与美食6月 婚礼与热爱7~8月 就医与别离9~11月 陪伴与暖房12月 体验&新生 运动追剧读书总结 生活 生活是一个修罗场,来世间一场,要经历丰腴有趣的人生。去体验各种滋味&…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...