YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)
一、本文介绍
本文给大家带来的改进机制是利用ASFF改进YOLOv8的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推荐大家使用。
推荐指数:⭐⭐⭐⭐⭐
涨点效果:⭐⭐⭐⭐⭐
专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备
训练结果对比图->
目录
一、本文介绍
二、ASFF的基本框架原理
三、ASFF_Detect的核心代码
四、手把手教你添加ASFF_Detect检测头
4.1 修改一
4.2 修改二
4.3 修改三
4.4 修改四
4.5 修改五
4.6 修改六
4.7 修改七
4.8 修改八
4.9 修改九
五、Detect_AFPN检测头的yaml文件
六、完美运行记录
七、本文总结
二、ASFF的基本框架原理
官方论文地址: 官方论文地址点击即可跳转
官方代码地址: 官方代码地址点击即可跳转
ASFF(自适应空间特征融合)方法针对单次对象检测任务提出,解决了不同特征尺度间的一致性问题。其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。研究表明,将ASFF应用于YOLOv3可以显著提高在MS COCO数据集上的检测性能,实现了速度与准确性的平衡。ASFF方法可以通过反向传播进行训练,与模型无关,并且引入的计算开销很小,使其成为现有对象检测框架的一种实用增强。
ASFF的创新点主要包括:
1. 自适应空间特征融合:提出了一种新的金字塔特征融合策略,能够空间过滤冲突信息,压制不同尺度特征间的不一致性。
2. 改善尺度不变性:通过ASFF策略,显著提升了特征的尺度不变性,有助于提高对象检测的准确性。
3. 低推理开销:在提升检测性能的同时,几乎不增加额外的推理开销。
这些创新使ASFF成为单次对象检测领域的一个重要进展,特别是对处理不同尺度对象的能力的提升,所以将其对于一些单一尺度检测的Neck适合是不适用的大家需要注意这一点。
这张图片展示了自适应空间特征融合(ASFF)机制的工作原理,它是用于单次对象检测的。在这种结构中,不同层级的特征(表示为不同颜色的层)首先通过各自的步幅(stride)进行下采样或上采样,以便所有特征具有相同的空间维度。
- Level 1、Level 2和Level 3指的是特征金字塔中不同层级的特征,每个层级都有不同的空间分辨率。
- ASFF-1、ASFF-2和ASFF-3表示应用了ASFF机制的不同层级的特征融合。
- 在ASFF-3的放大部分,我们可以看到来自其他层级的特征(x1→3、x2→3)被调整到与第三层(x3→3)相同的尺寸,然后它们通过学习到的权重图进行加权融合,生成最终用于预测的融合特征()。
通过这种方式,ASFF能够在每个空间位置自适应地选择最有用的特征,以提高检测的准确性。这种方法允许模型根据每个特定位置和尺度的上下文,灵活地决定哪些特征层级对最终预测最为重要。
三、ASFF_Detect的核心代码
现在是三头的检测版本,后期我会出四头的增加小目标检测层的版本给大家,其使用方式看章节四。
import torch
import torch.nn as nn
from ultralytics.utils.tal import dist2bbox, make_anchors
import math
import torch.nn.functional as Fdef autopad(k, p=None, d=1): # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU() # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class DFL(nn.Module):"""Integral module of Distribution Focal Loss (DFL).Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391"""def __init__(self, c1=16):"""Initialize a convolutional layer with a given number of input channels."""super().__init__()self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)x = torch.arange(c1, dtype=torch.float)self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))self.c1 = c1def forward(self, x):"""Applies a transformer layer on input tensor 'x' and returns a tensor."""b, c, a = x.shape # batch, channels, anchorsreturn self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)class ASFFV5(nn.Module):def __init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):"""ASFF version for YoloV5 .different than YoloV3multiplier should be 1, 0.5 which means, the channel of ASFF can be512, 256, 128 -> multiplier=1256, 128, 64 -> multiplier=0.5For even smaller, you need change code manually."""super(ASFFV5, self).__init__()self.level = levelself.dim = [int(1024 * multiplier), int(512 * multiplier),int(256 * multiplier)]# print(self.dim)self.inter_dim = self.dim[self.level]if level == 0:self.stride_level_1 = Conv(int(512 * multiplier), self.inter_dim, 3, 2)self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)self.expand = Conv(self.inter_dim, int(1024 * multiplier), 3, 1)elif level == 1:self.compress_level_0 = Conv(int(1024 * multiplier), self.inter_dim, 1, 1)self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)self.expand = Conv(self.inter_dim, int(512 * multiplier), 3, 1)elif level == 2:self.compress_level_0 = Conv(int(1024 * multiplier), self.inter_dim, 1, 1)self.compress_level_1 = Conv(int(512 * multiplier), self.inter_dim, 1, 1)self.expand = Conv(self.inter_dim, int(256 * multiplier), 3, 1)# when adding rfb, we use half number of channels to save memorycompress_c = 8 if rfb else 16self.weight_level_0 = Conv(self.inter_dim, compress_c, 1, 1)self.weight_level_1 = Conv(self.inter_dim, compress_c, 1, 1)self.weight_level_2 = Conv(self.inter_dim, compress_c, 1, 1)self.weight_levels = Conv(compress_c * 3, 3, 1, 1)self.vis = visdef forward(self, x): # l,m,s"""# 128, 256, 512512, 256, 128from small -> large"""x_level_0 = x[2] # lx_level_1 = x[1] # mx_level_2 = x[0] # s# print('x_level_0: ', x_level_0.shape)# print('x_level_1: ', x_level_1.shape)# print('x_level_2: ', x_level_2.shape)if self.level == 0:level_0_resized = x_level_0level_1_resized = self.stride_level_1(x_level_1)level_2_downsampled_inter = F.max_pool2d(x_level_2, 3, stride=2, padding=1)level_2_resized = self.stride_level_2(level_2_downsampled_inter)elif self.level == 1:level_0_compressed = self.compress_level_0(x_level_0)level_0_resized = F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')level_1_resized = x_level_1level_2_resized = self.stride_level_2(x_level_2)elif self.level == 2:level_0_compressed = self.compress_level_0(x_level_0)level_0_resized = F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')x_level_1_compressed = self.compress_level_1(x_level_1)level_1_resized = F.interpolate(x_level_1_compressed, scale_factor=2, mode='nearest')level_2_resized = x_level_2# print('level: {}, l1_resized: {}, l2_resized: {}'.format(self.level,# level_1_resized.shape, level_2_resized.shape))level_0_weight_v = self.weight_level_0(level_0_resized)level_1_weight_v = self.weight_level_1(level_1_resized)level_2_weight_v = self.weight_level_2(level_2_resized)# print('level_0_weight_v: ', level_0_weight_v.shape)# print('level_1_weight_v: ', level_1_weight_v.shape)# print('level_2_weight_v: ', level_2_weight_v.shape)levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)levels_weight = self.weight_levels(levels_weight_v)levels_weight = F.softmax(levels_weight, dim=1)fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] + \level_1_resized * levels_weight[:, 1:2, :, :] + \level_2_resized * levels_weight[:, 2:, :, :]out = self.expand(fused_out_reduced)if self.vis:return out, levels_weight, fused_out_reduced.sum(dim=1)else:return outclass Detect_ASFF(nn.Module):"""YOLOv8 Detect head for detection models."""dynamic = False # force grid reconstructionexport = False # export modeshape = Noneanchors = torch.empty(0) # initstrides = torch.empty(0) # initdef __init__(self, nc=80, ch=(), multiplier=0.25, rfb=False):"""Initializes the YOLOv8 detection layer with specified number of classes and channels."""super().__init__()self.nc = nc # number of classesself.nl = len(ch) # number of detection layersself.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = nc + self.reg_max * 4 # number of outputs per anchorself.stride = torch.zeros(self.nl) # strides computed during buildc2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channelsself.cv2 = nn.ModuleList(nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)def forward(self, x):"""Concatenates and returns predicted bounding boxes and class probabilities."""x1 = self.l0_fusion(x)x2 = self.l1_fusion(x)x3 = self.l2_fusion(x)x = [x3, x2, x1]shape = x[0].shape # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapex_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV opsbox = x_cat[:, :self.reg_max * 4]cls = x_cat[:, self.reg_max * 4:]else:box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.stridesif self.export and self.format in ('tflite', 'edgetpu'):# Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:# https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309# See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695img_h = shape[2] * self.stride[0]img_w = shape[3] * self.stride[0]img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)dbox /= img_sizey = torch.cat((dbox, cls.sigmoid()), 1)return y if self.export else (y, x)def bias_init(self):"""Initialize Detect() biases, WARNING: requires stride availability."""m = self # self.model[-1] # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequencyfor a, b, s in zip(m.cv2, m.cv3, m.stride): # froma[-1].bias.data[:] = 1.0 # boxb[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)if __name__ == "__main__":# Generating Sample imageimage1 = (1, 64, 32, 32)image2 = (1, 128, 16, 16)image3 = (1, 256, 8, 8)image1 = torch.rand(image1)image2 = torch.rand(image2)image3 = torch.rand(image3)image = [image1, image2, image3]channel = (64, 128, 256)# Modelmobilenet_v1 = Detect_ASFF(nc=80, ch=channel)out = mobilenet_v1(image)print(out)
四、手把手教你添加ASFF_Detect检测头
这里教大家添加检测头,检测头的添加相对于其它机制来说比较复杂一点,修改的地方比较多。
具体更多细节可以看我的添加教程博客,下面的教程也是完美运行的,看那个都行具体大家选择。
添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头
4.1 修改一
首先我们将上面的代码复制粘贴到'ultralytics/nn/modules' 目录下新建一个py文件复制粘贴进去,具体名字自己来定,我这里起名为ASFFHead.py。
4.2 修改二
我们新建完上面的文件之后,找到如下的文件'ultralytics/nn/tasks.py'。这里需要修改的地方有点多,总共有7处,但都很简单。首先我们在该文件的头部导入我们ASFFHead文件中的检测头。
4.3 修改三
找到如下的代码进行将检测头添加进去,这里给大家推荐个快速搜索的方法用ctrl+f然后搜索Detect然后就能快速查找了。
4.4 修改四
同理将我们的检测头添加到如下的代码里。
4.5 修改五
同理
4.6 修改六
同理
4.7 修改七
同理
4.8 修改八
这里有一些不一样,我们需要加一行代码
else:return 'detect'
为啥呢不一样,因为这里的m在代码执行过程中会将你的代码自动转换为小写,所以直接else方便一点,以后出现一些其它分割或者其它的教程的时候在提供其它的修改教程。
4.9 修改九
这里也有一些不一样,需要自己手动添加一个括号,提醒一下大家不要直接添加,和我下面保持一致。
五、Detect_AFPN检测头的yaml文件
这个代码的yaml文件和正常的对比也需要修改一下,如下->
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect_ASFF, [nc]] # Detect(P3, P4, P5)
六、完美运行记录
最后提供一下完美运行的图片。
七、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~
专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备
相关文章:

YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)
一、本文介绍 本文给大家带来的改进机制是利用ASFF改进YOLOv8的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头…...

思维训练-怎样设计一个MQ
架构师需要做各种设计,要不断地提高自己的设计能力。这有没有方法可以训练呢?有的,就是看到什么、想到什么,就假设对面坐着产品经理,一起讨论怎么把它设计出来。比如怎样设计一个MQ 我:首先我确认一下需求。…...
RK3399平台入门到精通系列讲解(导读篇)21天挑战Linux系统开发
🚀返回总目录 文章目录 一、关于作者1、博主的联系方式2、支持二、需要具备的知识和工具1、需掌握知识点2、需了解的知识点三、通过系列博客可以学到什么1、本系列博文特色2、21天学习目标3、21天学习内容4、学习时间5、学习产出...
企业微信会话存档sdk报错:A fatal error has been detected by the Java Runtime Environment
错误信息 # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc0x00007f218f93485d, pid10, tid58 # # JRE version: OpenJDK Runtime Environment 18.9 (11.0.14.11) (build 11.0.14.11) # Java VM: OpenJDK 64-Bit Server VM 18.9…...
nginx-docker 搭建websocket反向代理
下载镜像 docker pull nginx复制出配置文件 将/etc/nginx/nginx.conf和/etc/nginx/conf.d/default.conf复制到本机 nginx.conf文件内容 user nginx; worker_processes auto;error_log /var/log/nginx/error.log notice; pid /var/run/nginx.pid;events {worker_c…...
blender插件开发
Quickstart — Blender Python API Blender Python 编程:关键概念 - 知乎 系列目录链接(更新中,如无链接说明未更新) [Blender Python] 列出/插入/删除物体,Blender数据对象 - 知乎 (zhihu.com)[Blender Python] 设…...

【数据结构】二叉搜索(查找/排序)树
一、二叉搜索树基本概念 1、定义 二叉搜索树,又称为二叉排序树,二叉查找树,它满足如下四点性质: 1)空树是二叉搜索树; 2)若它的左子树不为空,则左子树上所有结点的值均小于它根结…...

Vue:Vue与VueComponent的关系图
1.一个重要的内置关系:VueComponent.prototype.proto Vue.prototype 2.为什么要有这个关系:让组件实例对象(vc)可以访问到 Vue原型上的属性、方法。 案例证明: <!DOCTYPE html> <html lang"en"&…...

Elasticsearch8集群部署
转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 本文记录在3台服务器上离线搭建es8.7.1版本集群。 1. 修改系统配置 1.1 hosts配置 在三台es节点服务器加入hostname解析&…...
【小白专用】c# 如何获取项目的根目录
1、取得控制台应用程序的根目录方法 方法1、Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径 方法2、AppDomain.CurrentDomain.BaseDirectory 获取基目录,它由程序集冲突解决程序用来探测程序集 2、取得Web应用程序的根目录方法 方法1、HttpRun…...

【PXIE301-208】基于PXIE总线架构的Serial RapidIO总线通讯协议仿真卡
板卡概述 PXIE301-208是一款基于3U PXIE总线架构的Serial RapidIO总线通讯协议仿真卡。该板卡采用Xilinx的高性能Kintex系列FPGA作为主处理器,实现各个接口之间的数据互联、处理以及实时信号处理。板卡支持4路SFP光纤接口,支持一个PCIe x8主机接口&…...

软件测试/测试开发丨Windows系统chromedriver安装与环境变量配置
一、selenium 环境配置 1、chrome 浏览器的安装与配置 目前比较常用的浏览器是 Google Chrome 浏览器,所以本教程以 chrome 为主,后面简介一下其他浏览器的环境配置。 (1)chrome 下载: www.google.cn/chrome/ (2&a…...

【vim 学习系列文章 3.1 -- vim 删除 ^M】
请阅读【嵌入式开发学习必备专栏 之 VIM 专栏】 文章目录 ^M 来源^M 删除 ^M 来源 在 Vim 中打开文件时,您可能会遇到行尾的 ^M 字符,这通常是因为文件使用了 Windows 风格的回车换行符(CRLF),而不是 Unix/Linux 风格…...

深入理解 C# 中的字符串比较:String.CompareTo vs String.Equals
深入理解 C# 中的字符串比较:String.CompareTo vs String.Equals 在处理字符串时,了解如何正确比较它们对于编写清晰、有效和可靠的 C# 程序至关重要。本文将深入探讨 C# 中的两个常用字符串比较方法:String.CompareTo 和 String.Equals&…...

DevOps持续交付之容器化CICD流水线
DevOps持续交付 随着DevOps⼤规模化的落地和应⽤,持续集成以及持续交付已经是⼀种常态的。CI指的是持续集成,使⽤的开源⼯具是Jenkins,CD指的是持续交付和持续部署,⼀个完整的软件开发⽣命周期为: 主要流程可以具体为: 构建阶段…...

Linux/Unix/国产化操作系统常用命令(二)
目录 后CentOS时代国产化操作系统国产化操作系统有哪些常用Linux命令关于Linux的LOGO 后CentOS时代 在CentOS 8发布后,就有了一些变化和趋势,可以说是进入了"后CentOS时代"。这个时代主要表现在以下几个方面: CentOS Stream的引入…...
基于SpringBoot的智慧生活商城系统
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的智慧生活商城系统,java…...

Vue框架引入Axios
首先已经创建好了 Vue 框架,安装好了 node.js。 没有完成的可按照此博客搭建:搭建Vue项目 之后打开终端,使用命令。 1、命令安装 axios 和 vue-axios npm install axios --save npm install vue-axios --save2、package.json 查看版本 在 p…...
EasyExcel 通过模板 导入、导出、下载模板
EasyExcel 通过模板 导入、导出、下载模板 import lombok.AllArgsConstructor; import lombok.Builder; import lombok.Data; import lombok.NoArgsConstructor;import javax.validation.constraints.NotBlank; import javax.validation.constraints.Pattern; import java.io.…...

SAP ABAP通过代码解锁SM12中被锁定目标<转载>(RFC: ENQUEUE_READ和 ENQUE_DELETE)
原文链接:https://blog.csdn.net/sinat_38119716/article/details/121406275 备注 RFC:ENQUEUE_READ 读取的是SM12的数据 RFC:ENQUEUE_READ2 读取的是SMENQ的数据 SM12 和 SMENQ 的数据其实是一样的,只是一个是旧的TCODE 一个是新的 解锁用的都是RFC: …...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...