【Matlab】LSTM长短期记忆神经网络时序预测算法(附代码)
资源下载: https://download.csdn.net/download/vvoennvv/88688439
一,概述
LSTM(Long Short-Term Memory)是一种常用的循环神经网络(Recurrent Neural Network,RNN)结构,由于其对于长序列数据的处理能力,被广泛应用于语音识别、自然语言处理、图像处理等领域。 LSTM 网络的主要特点是增加了一个称为“记忆单元(Memory Cell)”的结构,用于控制网络的信息流动。这个结构可以记忆信息并在需要的时候将其加入到当前的处理中,从而更好地处理长序列数据。另外,LSTM 网络还引入了三个称为“门(Gates)”的结构,包括输入门(Input Gate)、遗忘门(Forget Gate)和输出门(Output Gate),用于控制信息的输入、遗忘和输出。这些门的作用是通过一个 sigmoid 函数将输入信息映射到 0~1 之间的值,然后与记忆单元中的信息进行运算,控制信息的流动。通过这种方式,LSTM 网络可以有效的捕捉序列中的长期依赖关系,从而提高了神经网络处理序列数据的能力。
二,代码
代码中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel。
部分代码示例如下:
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测%% 划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
% %% 划分训练集和测试集
% temp = 1: 1: 922;
%
% P_train = res(temp(1: 700), 1: 15)';
% T_train = res(temp(1: 700), 16)';
% M = size(P_train, 2);
%
% P_test = res(temp(701: end), 1: 15)';
% T_test = res(temp(701: end), 16)';
% N = size(P_test, 2);
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train, f_, 1, 1, M));
P_test = double(reshape(P_test , f_, 1, 1, N));......
三,运行结果



资源下载: https://download.csdn.net/download/vvoennvv/88688439
相关文章:
【Matlab】LSTM长短期记忆神经网络时序预测算法(附代码)
资源下载: https://download.csdn.net/download/vvoennvv/88688439 一,概述 LSTM(Long Short-Term Memory)是一种常用的循环神经网络(Recurrent Neural Network,RNN)结构,由于其对于…...
2.2 设计FMEA步骤二:结构分析
2.2.1 目的 设计结构分析的目的是将设计识别和分解为系统、子系统、组件和零件,以便进行技术风险分析。其主要目标包括: 可视化分析范围结构化表示:方块图、边界图、数字模型、实体零件识别设计接口、交互作用和间隙促进顾客和供应商工程团队之间的协作(接口责任)为功能分…...
红队攻防实战之DC2
吾愿效法古圣先贤,使成千上万的巧儿都能在21世纪的中华盛世里,丰衣足食,怡然自得 0x01 信息收集: 1.1 端口探测 使用nmap工具 可以发现开放了80端口,网页服务器但是可以看出做了域名解析,所以需要在本地完成本地域名…...
【28】Kotlin语法进阶——使用协程编写高效的并发程序
提示:此文章仅作为本人记录日常学习使用,若有存在错误或者不严谨得地方欢迎指正。 文章目录 一、Kotlin中的协程1.1 协程的基本用法1.1.1协程与协程作用域1.1.2 使用launch函数创建子协程1.1.3 通过suspend关键声明挂起函数1.1.4 coroutineScope函数 1.2…...
【大数据面试知识点】Spark的DAGScheduler
Spark数据本地化是在哪个阶段计算首选位置的? 先看一下DAGScheduler的注释,可以看到DAGScheduler除了Stage和Task的划分外,还做了缓存的跟踪和首选运行位置的计算。 DAGScheduler注释: The high-level scheduling layer that i…...
Pycharm引用其他文件夹的py
Pycharm引用其他文件夹的py 方式1:包名设置为Sources ROOT 起包名的时候,需要在该文件夹上:右键 --> Mark Directory as --> Sources ROOT 标记目录为源码目录,就可以了。 再引用就可以了 import common from aoeweb impo…...
目标检测-One Stage-YOLOv1
文章目录 前言一、YOLOv1的网络结构和流程二、YOLOv1的损失函数三、YOLOv1的创新点总结 前言 前文目标检测-Two Stage-Mask RCNN提到了Two Stage算法的局限性: 速度上并不能满足实时的要求 因此出现了新的One Stage算法簇,YOLOv1是目标检测中One Stag…...
PHP序列化总结3--反序列化的简单利用及案例分析
反序列化中生成对象里面的值,是由反序列化里面的值决定,与原类中预定义的值的值无关,穷反序列化的对象可以使用类中的变量和方法 案例分析 反序列化中的值可以覆盖原类中的值 我们创建一个对象,对象创建的时候触发了construct方…...
大一C语言程序细节复盘2
7-4 学生成绩排序 分数 27 全屏浏览题目 切换布局 作者 张泳 单位 浙大城市学院 假设学生的基本信息包括学号、姓名、三门课程成绩以及个人平均成绩,定义一个能够表示学生信息的结构类型。输入n(n<50)个学生的成绩信息,按照学生…...
【QT】跨平台区分32位和64位的宏
目录 0.背景 1.详细 0.背景 项目用到,原用的是 “WIN32”和“WIN64”,但是发现在64位下的时候,进了表示32位的代码,上网查找,原来是宏写错了,特此记录,适用windows和linux 1.详细 修改前: #…...
对抗AUTOMIXUP
文章目录 摘要1、简介2、相关工作3、ADAUTOMIX3.1、深度学习分类器3.2、生成器3.3 对抗增强3.3.1 对抗损失 3.4 对抗优化 4、实验4.1、分类结果4.1.1、数据集分类4.1.2、精细分类 4.2、校准4.3、鲁棒性4.4、遮挡鲁棒性4.5、迁移学习4.6、消融实验 5、结论附录AA.1 数据集信息A.…...
AMEYA360:什么是热敏电阻 热敏电阻基础知识详解
热敏电阻(thermistor)是对温度敏感的一种电子器件,其电阻值会随着温度的变化而发生改变。 热敏电阻按照温度系数不同分为正温度系数热敏电阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor&#…...
RedisTemplate自增时保证原子性的lua脚本限制接口请求频率
场景:限制请求后端接口的频率,例如1秒钟只能请求次数不能超过10次,通常的写法是: 1.先去从redis里面拿到当前请求次数 2.判断当前次数是否大于或等于限制次数 3.当前请求次数小于限制次数时进行自增 这三步在请求不是很密集的时…...
《通信基站绿色低碳服务评价技术要求》团体标准顺利通过技术审查
2023年12月14日团体标准《通信基站绿色低碳服务评价技术要求》召开了技术审查视频会议。来自节能权威机构、科研院校、通信行业企业的专家以及标准编制组代表参加了本次会议。 技术审查专家组由郑州大学能动学院教授赵金辉、国家节能中心节能技术推广处处长辛升、中国标准化研…...
堆排序(C语言版)
一.堆排序 堆排序即利用堆的思想来进行排序,总共分为两个步骤: 1. 建堆 升序:建大堆 降序:建小堆 2. 利用堆删除思想来进行排序 1.1.利用上下调整法实现堆排序 第一步:建堆 好了,每次建堆都要问自己…...
实现区域地图散点图效果,vue+echart地图+散点图
需求:根据后端返回的定位坐标数据实现定位渲染 1.效果图 2.准备工作,在main.js和index.js文件中添加以下内容 main.js app.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M…...
Kubernetes 学习总结(41)—— 云原生容器网络详解
背景 随着网络技术的发展,网络的虚拟化程度越来越高,特别是云原生网络,叠加了物理网络、虚机网络和容器网络,数据包在网络 OSI 七层网络模型、TCP/IP 五层网络模型的不同网络层进行封包、转发和解包。网络数据包跨主机网络、容器…...
多人协同开发git flow,创建初始化项目版本
文章目录 多人协同开发git flow,创建初始化项目版本1.gitee创建组织模拟多人协同开发2.git tag 打标签3.git push origin --tags 多人协同开发git flow,创建初始化项目版本 1.gitee创建组织模拟多人协同开发 组织中新建仓库 推送代码到我们组织的仓库 2…...
「Kafka」入门篇
「Kafka」入门篇 基础架构 Kafka 快速入门 集群规划 集群部署 官方下载地址:http://kafka.apache.org/downloads.html 解压安装包: [atguiguhadoop102 software]$ tar -zxvf kafka_2.12-3.0.0.tgz -C /opt/module/修改解压后的文件名称: [a…...
PHP8的JIT(Just-In-Time)编译器是什么?
PHP8的JIT(Just-In-Time)编译器是什么? PHP8是最新的PHP版本,引入了JIT(Just-In-Time)编译器,以进一步提高性能和执行速度。 JIT编译器是一种在运行时将解释性语言转化为机器码的技术。在过去…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
