当前位置: 首页 > news >正文

Unity中Shader裁剪空间推导(透视相机到裁剪空间的转化矩阵)

文章目录

  • 前言
  • 一、简单看一下 观察空间—>裁剪空间—>屏幕空间 的转化
    • 1、观察空间(右手坐标系、透视相机)
    • 2、裁剪空间(左手坐标系、且转化为了齐次坐标)
    • 3、屏幕空间(把裁剪坐标归一化设置)
    • 4、从观察空间到裁剪空间
    • 5、从裁剪空间到屏幕空间后
  • 二、透视相机的参数推导
    • 1、从XoY平面,求出X~v~从观察空间到裁剪空间的坐标投影 X~p~
    • 2、从YoZ平面,求出Y~v~从观察空间到裁剪空间的坐标投影 Y~p~
  • 三、把投影到近裁剪面的坐标 归一化设置
    • 1、求归一化设置后的 x~n~
    • 2、求归一化设置后的 y~n~
    • 3、得到最后化简的公式
  • 四、构建转化矩阵
    • 1、在OpenGL[-1,1]下:
    • 2、在DirectX[1,0]下:
    • 3、把A、B代入矩阵得


前言

我们把顶点坐标信息转化为裁剪空间。有可能使用到正交相机信息 或 透视相机。我们在这篇文章中,推导一下透视相机视图空间下的坐标转化到裁剪空间的矩阵。

在这里插入图片描述


一、简单看一下 观察空间—>裁剪空间—>屏幕空间 的转化

在这里插入图片描述

1、观察空间(右手坐标系、透视相机)

在这里插入图片描述

2、裁剪空间(左手坐标系、且转化为了齐次坐标)

在这里插入图片描述

3、屏幕空间(把裁剪坐标归一化设置)

在这里插入图片描述

4、从观察空间到裁剪空间

用透视投影矩阵先转化到裁剪空间
然后,在转化为齐次坐标

5、从裁剪空间到屏幕空间后

− 1 ≤ x c w ≤ 1 -1 \leq \frac{x_c}{w}\leq1 1wxc1

− w ≤ x c ≤ w -w \leq x_c\leq w wxcw


二、透视相机的参数推导

在这里插入图片描述

  • 我们对于远裁剪面只是已知 f,其他参数都是未知

1、从XoY平面,求出Xv从观察空间到裁剪空间的坐标投影 Xp

在这里插入图片描述

  • 点 V 是观察空间下的模型顶点,xyz是已知的
    已知: ( x v , y v , z v ) 、 − n (x_v,y_v,z_v) 、 -n (xv,yv,zv)n
  • 点P是该点在近裁剪面上的投影点,xyz是未知的
    未知: ( x p , y p , z p ) (x_p,y_p,z_p) (xp,yp,zp)
  • 我们在 XoZ平面上,能求的就是 xp
    求: x p x_p xp

z p = − n z_p = -n zp=n

y p 在 X o Z 平面下,无法计算 y_p 在XoZ平面下,无法计算 ypXoZ平面下,无法计算

  • v点向Z轴做垂线,原点连接v点,围成的两个三角形相似,可得:

x p x v = − n z v \frac{x_p}{x_v} = \frac{-n}{z_v} xvxp=zvn

x p = − n z v x v x_p = \frac{-n}{z_v} x_v xp=zvnxv

P = ( − n z v x v , 未知 , − n ) P = (\frac{-n}{z_v}x_v,未知,-n) P=(zvnxv,未知,n)

2、从YoZ平面,求出Yv从观察空间到裁剪空间的坐标投影 Yp

在这里插入图片描述

  • 点 V 是观察空间下的模型顶点,xyz是已知的
    已知: ( x v , y v , z v ) 、 − n (x_v,y_v,z_v) 、 -n (xv,yv,zv)n
  • 点P是该点在近裁剪面上的投影点,xyz是未知的
    未知: ( x p , y p , z p ) (x_p,y_p,z_p) (xp,yp,zp)
  • 我们在 YoZ平面上,能求的就是 yp
    求: y p y_p yp

z p = − n z_p = -n zp=n

x p 在 X o Z 平面下,无法计算 x_p 在XoZ平面下,无法计算 xpXoZ平面下,无法计算

  • v点向Z轴做垂线,原点连接v点,围成的两个三角形相似,可得:

y p y v = − n z v \frac{y_p}{y_v} = \frac{-n}{z_v} yvyp=zvn

y p = − n z v y v y_p = \frac{-n}{z_v} y_v yp=zvnyv

P = ( − n z v x v , − n z v y v , − n ) P = (\frac{-n}{z_v}x_v,\frac{-n}{z_v} y_v,-n) P=(zvnxv,zvnyv,n)


三、把投影到近裁剪面的坐标 归一化设置

P = ( − n z v x v , − n z v y v , − n ) P = (\frac{-n}{z_v}x_v,\frac{-n}{z_v} y_v,-n) P=(zvnxv,zvnyv,n)

化到[-1,1]之间
具体参考Unity中Shader裁剪空间推导(正交相机到裁剪空间的转化矩阵)

1、求归一化设置后的 xn

  • l ≤ x ≤ r l \leq x \leq r lxr 化为: − 1 ≤ 2 x w ≤ 1 -1 \leq \frac{2x}{w} \leq 1 1w2x1

− 1 ≤ − 2 n x v z v w ≤ 1 -1\leq \frac{-2nx_v}{z_vw}\leq 1 1zvw2nxv1

− 1 ≤ − 2 n w ⋅ x v z v ≤ 1 -1\leq \frac{-2n}{w}·\frac{x_v}{z_v}\leq 1 1w2nzvxv1

2、求归一化设置后的 yn

  • l ≤ y ≤ r l \leq y \leq r lyr 化为: − 1 ≤ 2 y h ≤ 1 -1 \leq \frac{2y}{h} \leq 1 1h2y1

− 1 ≤ − 2 n y v z v h ≤ 1 -1\leq\frac{-2ny_v}{z_vh}\leq1 1zvh2nyv1

− 1 ≤ − 2 n h ⋅ y v z v ≤ 1 -1\leq\frac{-2n}{h}·\frac{y_v}{z_v}\leq1 1h2nzvyv1

3、得到最后化简的公式

由于NDC下的坐标由透视除法而得
我们假设透视除法中的 w 为 -zv
还原到裁剪空间还需要乘以 -zv

  • X:

− 1 ≤ − 2 n w ⋅ x v z v ≤ 1 -1\leq \frac{-2n}{w}·\frac{x_v}{z_v}\leq 1 1w2nzvxv1

x n = − 2 n w x v z v x_n = \frac{-2n}{w}\frac{x_v}{z_v} xn=w2nzvxv

− x n z v = 2 n w x v -x_nz_v = \frac{2n}{w}x_v xnzv=w2nxv

  • Y:

− 1 ≤ − 2 n h ⋅ y v z v ≤ 1 -1\leq\frac{-2n}{h}·\frac{y_v}{z_v}\leq1 1h2nzvyv1

y n = − 2 n h y v z v y_n = \frac{-2n}{h}\frac{y_v}{z_v} yn=h2nzvyv

− y n z v = 2 n h y v -y_n z_v= \frac{2n}{h}y_v ynzv=h2nyv

  • Z:

z n = ? z_n = ? zn=?

− z n z v = − z v ? -z_nz_v = -z_v? znzv=zv?

  • W:

w = 1 w = 1 w=1

− w n z v = − z v -w_nz_v = -z_v wnzv=zv


四、构建转化矩阵

裁剪空间下的点 = 观察空间下的基向量 在 裁剪空间下的矩阵 * 点在观察空间下的坐标

P c = [ V c ] ⋅ P v P_c = [V_c]·P_v Pc=[Vc]Pv

P c = [ C v ] − 1 ⋅ P v P_c = [C_v]^{-1}·P_v Pc=[Cv]1Pv

P c = [ C v ] T ⋅ P v P_c = [C_v]^{T}·P_v Pc=[Cv]TPv

  • − x n z v = 2 n w x v -x_nz_v = \frac{2n}{w}x_v xnzv=w2nxv
  • − y n z v = 2 n h y v -y_n z_v= \frac{2n}{h}y_v ynzv=h2nyv
  • − z n z v = − z v ? -z_nz_v = -z_v? znzv=zv?
  • − w n z v = − z v -w_nz_v = -z_v wnzv=zv

[ 2 v w 0 ? ? 0 2 n h ? ? 0 0 ? ? 0 0 ? ? ] T = [ 2 v w 0 0 0 0 2 n h 0 0 ? ? ? ? ? ? ? ? ] \begin{bmatrix} \frac{2v}{w} & 0 & ? &?\\ 0 & \frac{2n}{h} & ? &?\\ 0 & 0 & ? &?\\ 0 & 0 & ? & ?\\ \end{bmatrix}^T =\begin{bmatrix} \frac{2v}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ ? & ? & ? &?\\ ? & ? & ? & ?\\ \end{bmatrix} w2v0000h2n00???????? T= w2v0??0h2n??00??00??

[ 2 v w 0 0 0 0 2 n h 0 0 ? ? ? ? ? ? ? ? ] ⋅ [ x v y v z v 1 ] = ( − x n z v , − y n z v , − z n z v , − w n z v ) \begin{bmatrix} \frac{2v}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ ? & ? & ? &?\\ ? & ? & ? & ?\\ \end{bmatrix} · \begin{bmatrix} x_v\\ y_v\\ z_v\\ 1\\ \end{bmatrix} = (-x_nz_v,-y_nz_v,-z_nz_v,-w_nz_v) w2v0??0h2n??00??00?? xvyvzv1 =(xnzv,ynzv,znzv,wnzv)

最后一行由于相乘结果为1可以得出,把最后未知部分设为A,B
[ 2 v w 0 0 0 0 2 n h 0 0 0 0 A B 0 0 − 1 0 ] ⋅ [ x v y v z v 1 ] \begin{bmatrix} \frac{2v}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & A &B\\ 0 & 0 & -1 & 0\\ \end{bmatrix} · \begin{bmatrix} x_v\\ y_v\\ z_v\\ 1\\ \end{bmatrix} w2v0000h2n0000A100B0 xvyvzv1

z c = A z v + B z_c = Az_v+B zc=Azv+B

− z n z v = − z v -z_nz_v = -z_v znzv=zv

z c − z v = A z v + B − z v \frac{z_c}{-z_v} = \frac{Az_v+B}{-z_v} zvzc=zvAzv+B

z n = A z v + B − z v z_n = \frac{Az_v+B}{-z_v} zn=zvAzv+B

1、在OpenGL[-1,1]下:

z n = A z v + B − z v z_n = \frac{Az_v+B}{-z_v} zn=zvAzv+B

{ z v = − n , z n = − 1 z v = − f , z n = 1 \begin{cases} z_v = -n,z_n=-1 \\ z_v = -f,z_n = 1 \end{cases} {zv=n,zn=1zv=f,zn=1

{ − 1 = − A n + B n 1 = − A f + B f \begin{cases} -1 = \frac{-An+B}{n}\\ 1 = \frac{-Af + B}{f} \end{cases} {1=nAn+B1=fAf+B

{ − n = − A n + B f = − A f + B \begin{cases} -n = -An+B\\ f = -Af + B \end{cases} {n=An+Bf=Af+B

B = A n − n B = An - n B=Ann

f = − A f + A n − n f = -Af +An-n f=Af+Ann

f + n = A ( n − f ) f + n= A(n-f) f+n=A(nf)

A = n + f n − f A = \frac{n+f}{n-f} A=nfn+f

B = n + f n − f n − n B = \frac{n+f}{n-f}n-n B=nfn+fnn

B = n 2 + f n n − f n 2 − n f n − f B = \frac{n^2 + fn}{n-f}\frac{n^2-nf}{n-f} B=nfn2+fnnfn2nf

B = 2 n f n − f B = \frac{2nf}{n-f} B=nf2nf

2、在DirectX[1,0]下:

z n = A z v + B − z v z_n = \frac{Az_v+B}{-z_v} zn=zvAzv+B

{ z v = − n , z n = 1 z v = − f , z n = 0 \begin{cases} z_v = -n,z_n=1 \\ z_v = -f,z_n = 0 \end{cases} {zv=n,zn=1zv=f,zn=0

{ 1 = − A n + B n 0 = − A f + B f \begin{cases} 1 = \frac{-An+B}{n}\\ 0 = \frac{-Af+B}{f} \end{cases} {1=nAn+B0=fAf+B

{ n = − A n + B 0 = − A f + B \begin{cases} n = -An+B\\ 0 = -Af+B \end{cases} {n=An+B0=Af+B

B = A f B = Af B=Af

n = − A n + A f n = -An+Af n=An+Af

n = A ( f − n ) n = A(f-n) n=A(fn)

A = n f − n A =\frac{n}{f-n} A=fnn

B = n f f − n B = \frac{nf}{f-n} B=fnnf

3、把A、B代入矩阵得

  • OpenGL
    [ 2 n w 0 0 0 0 2 n h 0 0 0 0 n + f n − f 2 n f n − f 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n+f}{n-f} &\frac{2nf}{n-f}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000nfn+f100nf2nf0
  • DirectX
    [ 2 n w 0 0 0 0 2 n h 0 0 0 0 n f − n n f f − n 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n}{f-n} &\frac{nf}{f-n}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000fnn100fnnf0

相关文章:

Unity中Shader裁剪空间推导(透视相机到裁剪空间的转化矩阵)

文章目录 前言一、简单看一下 观察空间—>裁剪空间—>屏幕空间 的转化1、观察空间(右手坐标系、透视相机)2、裁剪空间(左手坐标系、且转化为了齐次坐标)3、屏幕空间(把裁剪坐标归一化设置)4、从观察空…...

企业签名分发对移动应用开发者有什么影响

企业签名分发是移动应用开发者在应用程序发布前测试、内部分发和特定的受众群体分发等方面比较常用的一种工具。那对于应用商城分发有啥区别,下面简单的探讨一下。 独立分发能力 通过企业签名分发开发者可以自己决定应用程序的发布时间和方式,不用受应用…...

3D游戏角色建模纹理贴图处理

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 在本文中,我们将介绍 3D 纹理的基础知识,并讨…...

【C++ 单例模式】

正确的析构 静态实例和回收类 SingletonMode.cpp #include <iostream> #include <pthread.h>class Singleton {private:Singleton(){std::cout << "构造" << std::endl;};~Singleton(){std::cout << "析构" << std::…...

React16源码: ConcurrentMode的使用及源码实现

ConcurrentMode 1 ) 概述 ConcurrentMode 是 React 16 出来的一个最令人振奋的功能在2018年年初是 Async Mode&#xff0c;在发布了16.6之后&#xff0c;名字进行了更新然后改成了 ConcurrentMode&#xff0c;中间的API有一个过渡的版本&#xff0c;后续会提到它其实是 React…...

SQL性能优化-索引

1.性能下降sql慢执行时间长等待时间长常见原因 1&#xff09;索引失效 索引分为单索、复合索引。 四种创建索引方式 create index index_name on user (name); create index index_name_2 on user(id,name,email); 2&#xff09;查询语句较烂 3&#xff09;关联查询太多join&a…...

Ubuntu本地快速搭建web小游戏网站,公网用户远程访问

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;…...

easyrecovery 2024最新免费密钥分享 实用数据恢复软件分享

在日常使用电脑时&#xff0c;我们经常会遇到误删文件的情况&#xff0c;若文件还未被彻底删除&#xff0c;我们还可以通过电脑中的回收站将其恢复&#xff0c;但若是回收站都被清空的话&#xff0c;想要恢复文件就变得比较困难了&#xff0c;而EasyRecovery可以很好的帮助我们…...

2.4信道复用技术

目录 2.4信道复用技术2.4.1频分复用、时分复用和统计时分复用频分复用FDM&#xff08;Frequency Division Multiplexing&#xff09;时分复用TDM&#xff08;Time Division Multiplexing&#xff09;统计时分复用STDM&#xff08;Statistic TDM&#xff09; 2.4.2波分复用2.4.3…...

JVM篇:JVM的简介

JVM简介 JVM全称为Java Virtual Machine&#xff0c;翻译过来就是java虚拟机&#xff0c;Java程序&#xff08;Java二进制字节码&#xff09;的运行环境 JVM的优点&#xff1a; Java最大的一个优点是&#xff0c;一次编写&#xff0c;到处运行。之所以能够实现这个功能就是依…...

uniapp 输入手机号并且正则校验

1.<input input“onInput” :value“phoneNum” type“number” maxlength“11”/> 3. method里面写 onInput(e){ this.phoneNum e.detail.value }, 4.调用接口时候校验正则 if (!/^1[3456789]\d{9}$/.test(this.phoneNum)) {uni.showToast({title: 请输入正确的手机号…...

经典目标检测YOLO系列(一)复现YOLOV1(3)正样本的匹配及损失函数的实现

经典目标检测YOLO系列(一)复现YOLOV1(3)正样本的匹配及损失函数的实现 之前&#xff0c;我们依据《YOLO目标检测》(ISBN:9787115627094)一书&#xff0c;提出了新的YOLOV1架构&#xff0c;并解决前向推理过程中的两个问题&#xff0c;继续按照此书进行YOLOV1的复现。 经典目标…...

kbdnecat.DLL文件缺失,软件或游戏无法启动运营,快速修复方法

“kbdnecat.DLL文件是什么&#xff1f;为什么一起动游戏或软件&#xff0c;Windows就报错“kbdnecat.DLL文件缺失&#xff0c;软件无法启动””&#xff0c;应该怎么修复呢&#xff1f; 首先&#xff0c;先来了解“kbdnecat.DLL文件”是什么&#xff1f; kbdnecat.DLL是一个动…...

Dockerfile与DockerCompose

Docker的Image结构是怎样的&#xff1f; 镜像是将应用程序 及其需要的 系统函数库、环境、配置、依赖 打包而成。 镜像结构 入口&#xff08; Entrypoint &#xff09; 镜像运行入口&#xff0c;一般是程序启动的脚本和参数 层&#xff08; Layer &#xff09; 在BaseImage基…...

【CFP-专栏2】计算机类SCI优质期刊汇总(含IEEE/Top)

一、计算机区块链类SCI-IEEE 【期刊概况】IF:4.0-5.0, JCR2区&#xff0c;中科院2区&#xff1b; 【大类学科】计算机科学&#xff1b; 【检索情况】SCI在检&#xff1b; 【录用周期】3-5个月左右录用&#xff1b; 【截稿时间】12.31截稿&#xff1b; 【接收领域】区块链…...

Stable Diffusion 本地部署详细教程

目录 一、前言二、系统和硬件要求三、安装前说明四、安装步骤5、升级pip(这是管理python环境软件工具),并把资源库换成国内地址为清华镜像。一、前言 虽然MJ和SD都可以生成图像,但是为什么我们要考虑使用本地SD部署呢?原因其实很简单:首先,本地部署的使用成本更低,且更加…...

【超图】SuperMap iClient3D for WebGL/WebGPU —— 坐标系位置 —— Cartesian2

作者&#xff1a;taco 说到关于地理必然逃不开位置的关系。借用百度百科的内容来说地理学&#xff08;geography&#xff09;&#xff0c;是研究地球表层空间地理要素或者地理综合体空间分布规律、时间演变过程和区域特征的一门学科。所以位置&坐标系必然逃不掉了。那么在S…...

【Matlab】LSTM长短期记忆神经网络时序预测算法(附代码)

资源下载&#xff1a; https://download.csdn.net/download/vvoennvv/88688439 一&#xff0c;概述 LSTM&#xff08;Long Short-Term Memory&#xff09;是一种常用的循环神经网络&#xff08;Recurrent Neural Network&#xff0c;RNN&#xff09;结构&#xff0c;由于其对于…...

2.2 设计FMEA步骤二:结构分析

2.2.1 目的 设计结构分析的目的是将设计识别和分解为系统、子系统、组件和零件,以便进行技术风险分析。其主要目标包括: 可视化分析范围结构化表示:方块图、边界图、数字模型、实体零件识别设计接口、交互作用和间隙促进顾客和供应商工程团队之间的协作(接口责任)为功能分…...

红队攻防实战之DC2

吾愿效法古圣先贤&#xff0c;使成千上万的巧儿都能在21世纪的中华盛世里&#xff0c;丰衣足食&#xff0c;怡然自得 0x01 信息收集: 1.1 端口探测 使用nmap工具 可以发现开放了80端口&#xff0c;网页服务器但是可以看出做了域名解析&#xff0c;所以需要在本地完成本地域名…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...