R语言【CoordinateCleaner】——cc_dupl():根据物种名称和坐标以及用户定义的附加列删除或标记重复的记录
Package CoordinateCleaner version 2.0-20
Parameters
cc_dupl(x,lon = "decimallongitude",lat = "decimallatitude",species = "species",additions = NULL,value = "clean",verbose = TRUE
)
参数【x】:data.frame。包含地理坐标和物种名称。
参数【lon】:字符串。具有经度坐标的列。默认值 = “decimallongitude”。
参数【lat】:字符串。包含纬度坐标的列。默认值 = “decimallatitude”。
参数【species】:字符串。包含物种名称的列。默认值 = “species”。
参数【additions】:字符串的向量。要包含在重复测试中的其他列。例如,如下图所示,收集器名称和收集器编号。
参数【value】:字符串。定义输出值。
参数【verbose】:逻辑。如果为 TRUE,则报告测试的名称和标记的记录数。
Value
根据参数【value】,包含测试认为正确的记录的 data.frame (“clean”) 或逻辑向量 (“flagged”),其中 TRUE = 测试通过,FALSE = 测试失败/可能有问题。默认值 = “clean”。
Conclusion
cc_dupl()
函数是CoordinateCleaner软件包中的一个特定函数,用于检测和处理生物多样性数据集中的重复记录。以下是对cc_dupl()
函数的总结性介绍:
cc_dupl()
函数用于识别数据集中的重复记录,并根据不同的参数和阈值进行处理。- 它可以通过比较记录之间的经纬度坐标、采样日期和其他属性,来确定是否存在重复的数据记录。
- 该函数还提供了各种选项和方法,以选择处理重复记录的方式,如保留第一次出现的记录、保留最后一次出现的记录或合并重复的记录。
cc_dupl()
函数还可以生成一个关于重复记录的详细报告,帮助用户审查和验证相关数据。- 该函数返回一个包含处理后数据集的对象,可以继续在其他函数中使用。
总之,cc_dupl()
函数是CoordinateCleaner软件包中一个有用的函数,可帮助用户检测和处理生物多样性数据集中的重复记录。它提供了各种选项和报告,以支持用户进行更精确和准确的数据清理。
Example
x <- data.frame(species = letters[1:10], decimallongitude = sample(x = 0:10, size = 100, replace = TRUE), decimallatitude = sample(x = 0:10, size = 100, replace = TRUE),collector = "Bonpl",collector.number = c(1001, 354),collection = rep(c("K", "WAG","FR", "P", "S"), 20))cc_dupl(x, value = "flagged")
cc_dupl(x, additions = c("collector", "collector.number"))
相关文章:
R语言【CoordinateCleaner】——cc_dupl():根据物种名称和坐标以及用户定义的附加列删除或标记重复的记录
Package CoordinateCleaner version 2.0-20 Parameters cc_dupl(x,lon "decimallongitude",lat "decimallatitude",species "species",additions NULL,value "clean",verbose TRUE ) 参数【x】:data.frame。包含地…...

Hadoop安装笔记1单机/伪分布式配置_Hadoop3.1.3——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理
将下发的ds_db01.sql数据库文件放置mysql中 12、编写Scala代码,使用Spark将MySQL的ds_db01库中表user_info的全量数据抽取到Hive的ods库中表user_info。字段名称、类型不变,同时添加静态分区,分区字段为etl_date,类型为String&am…...
python数据分析之交叉验证
python数据分析之交叉验证 1、常用的分类算法 有监督:SVM向量机、梯度提升、决策树(随机森林)、朴素贝叶斯、逻辑斯蒂回归、神经网络(cnn、rnn) 无监督:k-means、隐马尔可夫 2、数据分析过程 1、采集数据 2、数据预处理 3、特征选择 4、模型训练、评估、保存 5、模型…...

机器人技能学习--数据集剖析
文章目录 前言数据总览数据介绍actionsrobot0_eef_poserobot0_eef_quatstatesobject 参考资料 前言 一切为了能自己构建属于自己的数据集,所以,从现有数据集剖析入手。 目前,基于 MimicGen 官方提供的数据集,初始数据集有11组…...

Jenkins的Transfers路径怎么配置,解决Transfers配置不生效的问题
Transfers配置: 1.配置Source files: 要填写jar包的相对路径,从当前项目工作空间的根目录开始,看看我的工作空间你就懂了 !如图 我填的是 parent/build/libs/parent-1.0.0.jar,即不要 fdw1/ 的前缀 2.配置Remote directory: 远程目标文件夹,也就是你jar包要放到远程…...

php安装扩展event 提示 No package ‘openssl‘ found 解决方法
在使用pecl编译安装最新版event模块的时候提示 No package openssl found , 可是本机是安装了openssl的, 编译时找不到, 大概率就是环境配置的问题了, 增加 OPENSSL_CFLAGS OPENSSL_LIBS环境变量即可解决. 异常提示信息: checking for openssl > 1.0.2... no configure: …...
基于SpringBoot的动物领养平台的设计与实现
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的动物领养平台的设计与实…...

计算机网络期末复习——计算大题(一)
个人名片: 🦁作者简介:一名喜欢分享和记录学习的在校大学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:V…...

2024年深度学习、计算机视觉与大模型面试题综述,六大专题数百道题目
DeepLearning-Interview-Awesome-2024 本项目涵盖了大模型(LLMs)专题、计算机视觉与感知算法专题、深度学习基础与框架专题、自动驾驶、智慧医疗等行业垂域专题、手撕项目代码专题、优异开源资源推荐专题共计6大专题模块。我们将持续整理汇总最新的面试题并详细解析这些题目&a…...

解读 $mash 通证 “Fair Launch” 规则,将公平发挥极致
Solmash 是 Solana 生态中由社区主导的铭文资产 LaunchPad 平台,该平台旨在为 Solana 原生铭文项目,以及通过其合作伙伴 SoBit 跨链桥桥接到 Solana 的 Bitcoin 生态铭文项目提供更广泛的启动机会。有了 Solmash,将会有更多的 Solana 生态的铭…...
06、docker 安装mysql8
Docker 安装 MySQL8 下载mysql8的镜像 docker pull mysql:8.0.32启动镜像 docker run -p 3307:3306 --name mysql8 -e MYSQL_ROOT_PASSWORD123456 -d mysql:8.0.32配置挂载 创建挂载目录 mkdir -p /docker/mysql8.0.32/copy配置文件到创建的目录下 docker cp mysql:/etc/mysql…...

魔改Stable Diffusion,开源创新“单目深度估计”模型
单目深度估计一直是计算机视觉领域的难点。仅凭一张 RGB 图像,想要还原出场景的三维结构,在几何结构上非常不确定,必须依赖复杂的场景理解能力。 即便使用更强大的深度学习模型来实现,也面临算力需求高、图像数据注释量大、泛化能力弱等缺点。 为了解决这些难题&a…...
使用JAVA Zookeeper构建分布式键值存储
在这篇文章中,我将使用 JAVA 和网络套接字构建一个简单的分布式键值存储。 我将展示如何在具有多个分区和复制的集群中使用 Zookeeper 作为协调服务。 本系统中Zookeeper服务的功能如下: 维护从服务器到分区的映射,即哪些服务器属于分区“i”。这些数据还可用于推断哪些服务…...

2023-12-19 LeetCode每日一题(寻找峰值 II)
2023-12-19每日一题 一、题目编号 1901. 寻找峰值 II二、题目链接 点击跳转到题目位置 三、题目描述 一个 2D 网格中的 峰值 是指那些 严格大于 其相邻格子(上、下、左、右)的元素。 给你一个 从 0 开始编号 的 m x n 矩阵 mat ,其中任意两个相邻格子的值都 不…...

gin框架使用系列之五——表单校验
系列目录 《gin框架使用系列之一——快速启动和url分组》《gin框架使用系列之二——uri占位符和占位符变量的获取》《gin框架使用系列之三——获取表单数据》《gin框架使用系列之四——json和protobuf的渲染》 一 、表单验证的基本理论 在第三篇中,我们介绍了如何…...

HackTheBox - Medium - Linux - Interface
Interface Interface 是一种中等难度的 Linux 机器,具有“DomPDF”API 端点,该端点通过将“CSS”注入处理后的数据而容易受到远程命令执行的影响。“DomPDF”可以被诱骗在其字体缓存中存储带有“PHP”文件扩展名的恶意字体,然后可以通过从其…...
C++ 字符串操作说明 续
一、strstr函数 extern char *strstr(char *str1, const char *str2); 1. strstr(str1,str2) 函数用于判断字符串str2是否是str1的子串。如果是,则该函数返回str2在str1中首次出现的地址;否则,返回NULL。 2. str1: 被查找目标 string …...
[情商-7]:如何回答没有标准答案的两难问题
目录 前言: 一、用“逻辑推理思维”回答两难问题 二、用“情绪思维”回答两难问题 1.1 关注提问者提出问题背后的情绪状态和情绪/情感诉求 1.2 常见的常见的情绪和情感诉求 1.3 女性情感分析 1.4 理解女性情感的语言 1.5 如何通过语言理解女性的情绪需求 三…...

对偶问题的基本性质
写于:2024年1月3日晚 修改于: 原规划与对偶规划 原规划对偶规划 max z C T X s.t. { A X ≤ b , 其中 X ( m ∗ 1 ) X ≥ 0 \begin{aligned} & \max \mathrm{z}\mathbf{C}^T \mathbf{X} \\ & \text { s.t. }\left\{\begin{array}{l}\mat…...

Google Chrome 现在会在后台扫描泄露的密码
谷歌表示,Chrome 安全检查功能将在后台运行,检查网络浏览器中保存的密码是否已被泄露。 如果桌面用户正在使用标记为危险的扩展程序(从 Chrome Web Store 中删除)、最新的 Chrome 版本,或者如果启用安全浏览来阻止 Go…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...