当前位置: 首页 > news >正文

19、BLIP-2

简介

github
在这里插入图片描述

 通过利用预训练的视觉模型和语言模型来提升多模态效果和降低训练成本,预训练的视觉模型能够提供高质量的视觉表征,预训练的语言模型则提供了强大的语言生成能力。

实现过程

在这里插入图片描述
 为了弥合模态差距,提出了一个分两个阶段预训练的 Querying Transformer (Q-Former):

  1. 使用冻结Image Transformer的视觉语言表示学习阶段
  2. 使用冻结LLM的视觉到语言生成学习阶段

model

 Q-Former由两个Transformer子模块组成,它们共享相同的自关注层:

  1. 与冻结Image Encoder交互以提取视觉特征的Image Transformer
  2. 既可以作为Image Encoder又可以作为Image Decoder的Text Transformer

 queries通过 self-attention layers 相互交互,并通过 cross-attention layers (每隔一个转换块插入)与冻结的图像特征交互。queries 还可以通过相同的 self-attention layers 与文本交互。

 根据预训练任务的不同,应用不同的 self-attention 掩码来控制 query-text 交互。使用 B E R T b a s e BERT_{base} BERTbase 的预训练权重初始化QFormer ,而 cross-attention layers 是随机初始化的。Q-Former共包含188M个参数。queries 被视为模型参数。

 论文中使用32个queries维度为768,与Q-Former的中间层维度一样,其输出的 Z 的大小(32 × 768)远远小于冻结图像特征的大小(例如viti - l /14的257 × 1024)

Training

 为了减少计算成本并避免灾难性遗忘的问题,BLIP-2 在预训练时冻结预训练图像模型和语言模型,但是,简单地冻结预训练模型参数会导致视觉特征和文本特征难以对齐,为此BLIP-2提出两阶段预训练 Q-Former 来弥补模态差距:表示学习阶段和生成学习阶段。

表示学习阶段

 在表示学习阶段,将 Q-Former 连接到冻结的 Image Encoder,训练集为图像-文本对,通过联合优化三个预训练目标,在Query和Text之间分别采用不同的注意力掩码策略,从而控制Image Transformer和Text Transformer的交互方式

Image-Text Contrastive Learning (ITC)

ITC的优化目标是对齐图像嵌入和文本嵌入,将来自Image Transformer输出的Query嵌入 z 与来自Text Transformer输出的文本嵌入 t 对齐,为了避免信息泄漏,ITC采用了单模态自注意掩码,不允许Query和Text相互注意。具体来说,Text Transformer的文本嵌入是 [CLS] 标记的输出嵌入,而Query嵌入则包含多个输出嵌入,因此首先计算每个Query输嵌入与文本嵌入之间的相似度,然后选择最高的一个作为图像-文本相似度。

Image-grounded Text Generation (ITG)

ITG 是在给定输入图像作为条件的情况下,训练 Q-Former 生成文本,迫使Query提取包含文本信息的视觉特征。由于 Q-Former 的架构不允许冻结的图像编码器和文本标记之间的直接交互,因此生成文本所需的信息必须首先由Query提取,然后通过 self-attention layers 传递给文本标记。ITG采用多模态Causal Attention掩码来控制Query和Text的交互,Query可以相互关注,但不能关注Text标记,每个Text标记都可以处理所有Query及其前面的Text标记。这里将 [CLS] 标记替换为新的 [DEC] 标记,作为第一个文本标记来指示解码任务。

Image-Text Matching (ITM)

ITM是一个二元分类任务,通过预测图像-文本对是正匹配还是负匹配,学习图像和文本表示之间的细粒度对齐。这里将Image Transformer输出的每个Query嵌入输入到一个二类线性分类器中以获得对应的logit,然后将所有的logit平均,再计算匹配分数。ITM使用 bi-directional self-attention 掩码,所有Query和Text都可以相互关注。

生成学习阶段

 在生成预训练阶段,将 Q-Former连接到冻结的 LLM,以利用 LLM 的语言生成能力。这里使用全连接层将输出的Query嵌入线性投影到与 LLM 的文本嵌入相同的维度,然后将投影的Query嵌入添加到输入文本嵌入前面。由于 Q-Former 已经过预训练,可以提取包含语言信息的视觉表示,因此它可以有效地充当信息瓶颈,将最有用的信息提供给 LLM,同时删除不相关的视觉信息,减轻了 LLM 学习视觉语言对齐的负担。
在这里插入图片描述
 BLIP-2试验了两种类型的 LLM:基于解码器的 LLM 和基于编码器-解码器的 LLM。对于基于解码器的 LLM,使用语言建模损失进行预训练,其中冻结的 LLM 的任务是根据 Q-Former 的视觉表示生成文本。对于基于编码器-解码器的 LLM,使用前缀语言建模损失进行预训练,将文本分成两部分,前缀文本与视觉表示连接起来作为 LLM 编码器的输入,后缀文本用作 LLM 解码器的生成目标。

VQA-finetuning

在这里插入图片描述
LLM接收Q-Former的输出并将问题作为输入,然后预测答案。还将问题作为条件提供给Q-Former,使得提取的图像特征与问题更加相关。

相关文章:

19、BLIP-2

简介 github 通过利用预训练的视觉模型和语言模型来提升多模态效果和降低训练成本,预训练的视觉模型能够提供高质量的视觉表征,预训练的语言模型则提供了强大的语言生成能力。 实现过程 为了弥合模态差距,提出了一个分两个阶段预训练的 Qu…...

【微服务核心】MyBatis Plus

文章目录 1. 简介2. 入门使用3. 核心功能3.1 CRUD 接口3.1.1 Mapper CRUD 接口3.1.2 Service CRUD 接口 3.2 条件构造器3.3 分页插件3.4 Mybatis-Plus 注解 4. 拓展4.1 逻辑删除4.2 MybatisX快速开发插件 5. 插件5.1 [分页插件](#page)5.2 乐观锁插件 1. 简介 MyBatis Plus&am…...

什么是Alibaba Cloud Linux?完全兼容CentOS,详细介绍

Alibaba Cloud Linux是基于龙蜥社区OpenAnolis龙蜥操作系统Anolis OS的阿里云发行版,针对阿里云服务器ECS做了大量深度优化,Alibaba Cloud Linux由阿里云官方免费提供长期支持和维护LTS,Alibaba Cloud Linux完全兼容CentOS/RHEL生态和操作方式…...

Spark---RDD算子(单值类型Value)

文章目录 1.RDD算子介绍2.转换算子2.1 Value类型2.1.1 map2.1.2 mapPartitions2.1.3 mapPartitionsWithIndex2.1.4 flatMap2.1.5 glom2.1.6 groupBy2.1.7 filter2.1.8 sample2.1.9 distinct2.1.10 coalesce2.1.11 repartition2.1.12 sortBy 1.RDD算子介绍 RDD算子是用于对RDD进…...

数据库中的MVCC--多版本并发控制

一、前言 1、定义:MVCC(Multi-Version Concurrency Control),多版本并发控制,主要为了提高数据库 的并发性能。是MySQL的InnoDB存储引擎实现隔离级别的一种具体方式。用于实现提交读和可重 复读这两种隔离级别。 2…...

wps将姓名处理格式为:姓**

1.打开wps,在要处理数据右侧一个单元格 输入公式:LEFT(A1,1)&"**",然后回车 2.按住ctrl和处理好的数据的右下角小方框,往下拖动即可生成格式为:姓** 格式的数据 3.复制生成的数据,右键选择 “…...

2023年我的编程之旅:技术演进与自我成长的纪录

2023年我的编程之旅:技术演进与自我成长的纪录 转眼间,2023年已经悄然走到了尾声。这一年,对我来说既是挑战也是机遇的一年。我的编程之旅如同坐上了一辆高速前进的列车,从新技术的学习探索到项目实战的沉浸经历,再到…...

好用免费的WAF---如何安装雷池社区版

什么是雷池​ 雷池(SafeLine)是长亭科技耗时近 10 年倾情打造的 WAF,核心检测能力由智能语义分析算法驱动。 Slogan: 不让黑客越雷池半步。 什么是 WAF​ WAF 是 Web Application Firewall 的缩写,也被称为 Web 应用防火墙。 …...

看似 bug 又非 bug 的一个 bug

最近的一个项目中&#xff0c;对于 CSS 的一些属性一些选择符可以大胆使用&#xff0c;然后很意外得撞上一个 iOS 中 Safari 的一个解析问题。 <Component style{{height: "calc(100vh - 46px)"}}>一个组件</Component> 这样的一段代码很简单&#xff…...

mysql常见问题

批量导入SQL 数据库结构 数据时&#xff0c;如果数据是批量插入的话会报错&#xff1a;2006 - MySQL server has gone away。 解决办法&#xff1a;找到你的 mysql 目录下的 my.ini 配置文件&#xff0c;加入以下代码 max_allowed_packet500M wait_timeout288000 interactiv…...

QT上位机开发(串口界面设计)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 如果上位机要和嵌入式设备进行打交道的话&#xff0c;那么串口可能就是我们遇到的第一个硬件设备。串口的物理接线很简单&#xff0c;基本上就是收…...

k8s之pod

1、pod&#xff1a;k8s中最小的资源管理组件&#xff0c;最小化运行容器化应用的资源管理对象 &#xff08;1&#xff09;pod是一个抽象的概念&#xff0c;可以理解为一个或者多个容器化应用的集合 &#xff08;2&#xff09;一个pod中运行一个容器是最常用的方式 &#xff…...

第二百四十三回 再分享一个Json工具

文章目录 1. 概念介绍2. 分析与比较2.1 分析问题2.2 比较差异 3. 使用方法4. 内容总结 我们在上一章回中介绍了"分享三个使用TextField的细节"相关的内容&#xff0c;本章回中将再 分享一个Json插件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我…...

electron自定义菜单

创建menu.js const { app, Menu } require("electron"); const createMenu () > {const menu [{label: "菜单",submenu: [{label: "新增",click: () > {},}, ],},{label: "关于",submenu: [{label: "新增",click:…...

变量和函数提升(js的问题)

• js解释执行 • 变量和函数提升 变量声明提前&#xff0c;函数声明提前 • 变量声明提前&#xff1a;值停留在本地 • 函数声明提前&#xff1a;整个函数体提前 如果是var赋值声明的函数&#xff0c;变量提前&#xff0c;函数体停留在本地 1、变量提…...

Excel 插件:ASAP Utilities Crack

ASAP Utilities是一款功能强大的 Excel 插件&#xff0c;填补了 Excel 的空白。在过去的 20 年里&#xff0c;我们的加载项已经发展成为世界上最受欢迎的 Microsoft Excel 加载项之一。 ASAP Utilities 中的功能数量&#xff08;300 多个&#xff09;可能看起来有点令人眼花缭乱…...

hyperf 十九 数据库 二 模型

教程&#xff1a;Hyperf 一、命令行 symfony/console-CSDN博客 hypery 十一、命令行-CSDN博客 hyperf console 执行-CSDN博客 根据之前应该能了解到命令行的基本实现&#xff0c;和hyperf中命令行的定义。 1.1 命令初始化 hyperf.php中系统初始化中通过ApplicationFacto…...

使用python快速开发与PDF文档对话的Gemini聊天机器人

检索增强生成(Retrieval-augmented generation&#xff0c;RAG)使得我们可以让大型语言模型(LLMs)访问外部知识库数据(如pdf,word、text等)&#xff0c;从而让人们可以更加方便的通过LLM来学习外部数据的知识。今天我们将利用之前学习到的RAG方法&#xff0c;谷歌Gemini模型和l…...

Spring Cloud Gateway集成Knife4j

1、前提 网关路由能够正常工作。 案例 基于 Spring Cloud Gateway Nacos 实现动态路由拓展的参考地址&#xff1a;Spring Cloud Gateway Nacos 实现动态路由 详细官网案例&#xff1a;https://doc.xiaominfo.com/docs/middleware-sources/spring-cloud-gateway/spring-gatewa…...

Hive10_窗口函数

窗口函数&#xff08;开窗函数&#xff09; 1 相关函数说明 普通的聚合函数聚合的行集是组,开窗函数聚合的行集是窗口。因此,普通的聚合函数每组(Group by)只返回一个值&#xff0c;而开窗函数则可为窗口中的每行都返回一个值。简单理解&#xff0c;就是对查询的结果多出一列…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...