Azure OpenAI 官方指南02|ChatGPT 的架构设计与应用实例
ChatGPT 作为即将在微软全球 Azure 公有云平台正式发布的服务,已经迅速成为了众多用户关心的服务之一。而由 OpenAI 发布的 ChatGPT 产品,仅仅上线两个月,就成为互联网历史上最快突破一亿月活的应用。本期从技术角度深度解析 ChatGPT 的架构设计与应用实例。
ChatGPT的起源 ╱ 01
InsturctGPT的架构设计 ╱ 02
ChatGPT的技术应用场景及示例 ╱ 03
ChatGPT 的起源
ChatGPT 是由 OpenAI 公司在 2022年11月推出的一款智能聊天机器人程序,属于文本类AI应用。这里,Chat 即「聊天」,GPT 的全称为“Generative Pre-trained Transformer”。由于采用 Transformer 架构,且 ChatGPT 在 GPT-3 大模型基础上专门针对 Chat 聊天能力做了性能上的调优,所以 ChatGPT 在自然语言的许多交互场景中表现出了卓越的性能。
Transformer 模型在2017年问世,能够同时并行进行数据计算和模型训练,训练时长更短,并且训练得出的模型可用语法解释,也就是模型具有可解释性。经过训练后,这个最初的 Transformer 模型在包括翻译准确度、英语成分句法分析等各项评分上都达到了业内第一,成为当时最先进的大型语言模型(Large Language Model, LLM)。
2018年,在 Transformer 模型诞生还不到一年的时候,OpenAI 公司发表了论文“Improving Language Understanding by Generative Pre-training”(用创造型预训练提高模型的语言理解力),并推出了具有1.17亿个参数的GPT-1(Generative Pre-training Transformers)模型。
这是一个用大量数据训练的、基于 Transformer 结构的模型。OpenAI 的工程师使用了经典的大型书籍文本数据集(BookCorpus)进行模型预训练。该数据集包含超过7000本从未出版的书籍,涵盖了冒险、奇幻、言情等类别。在预训练之后,工程师们又针对四种不同的语言场景、使用不同的特定数据集对模型进行进一步的训练(又称为微调,Fine-Tuning)。最终训练所得的模型在问答、文本相似性评估、语义蕴含判定,以及文本分类这四种语言场景,都取得了比基础 Transformer 模型更优的结果,成为了新的业内第一。
2019年,OpenAI 公布了一个具有15亿个参数的模型:GPT-2。该模型架构与 GPT-1 原理相同,主要区别在于 GPT-2 的规模更大(10倍)。同时,OpenAI 也发表了介绍该模型的论文“Language Models are Unsupervised Multitask Learners”。
2020年,OpenAI 发表论文“Language Models are Few-Shot Learner”,并推出了最新的 GPT-3 模型——它有1750亿个参数。GPT-3 模型架构与 GPT-2 类似,但是规模大了整整两个数量级。GPT-3 的训练集也比前两款 GPT 模型要大得多:经过基础过滤的全网页爬虫数据集(4290亿个词符)、维基百科文章(30亿词符)、两个不同的书籍数据集(670亿词符)。
2022年3月,OpenAI再次发表论文“Training Language Models to Follow Instructions with Human Feedback”,并推出了基于 GPT-3 模型并进一步微调的 InstructGPT 模型。InstructGPT 的模型训练中加入了人类的评价和反馈数据,而不仅仅是事先准备好的数据集,从而训练出更真实、更无害,且更好地遵循用户意图的语言模型。
2022年11月,ChatGP 横空出世,它是基于 GPT-3.5 架构开发的对话AI模型,是 InstructGPT 的兄弟模型。但两者在训练模型的数据量上,以及数据收集、数据如何设置用于训练方面有所不同。
InsturctGPT 的架构设计
目前 Azure OpenAI 还没有官方公开资源详细说明 ChatGPT 的技术原理,因此我们将以 ChatGPT 的兄弟模型 InstructGPT 为对象,深度解析其算法架构设计。
如上图所示,开发人员将提示分为三个阶段,并以不同的方式为每个阶段创建响应和训练:
第 1 阶段 训练监督策略模型
在这个阶段,工程师会在数据集中随机抽取问题,由专门的标注人员给出高质量答案,然后用这些人工标注好的数据来微调 GPT-3.5 模型。这些标注人员会在应聘前进行筛选测试,训练数据大约有1万3千个。相较于第二、三阶段,这里用到的数据量较少。
标注人员根据提示 (prompt) 编写质量可靠的输出响应 (demonstrations)。这里采用的是 Supervised Fine-Tuning(SFT)模型,即有监督的策略来进行微调。微调之后,SFT 模型在遵循指令/对话方面已经优于 GPT-3.5,但不一定符合人类偏好。
第 2 阶段 训练奖励模型
这一阶段主要是训练一个奖励模型Reward Modeling (RM)。这里的训练数据是怎么得到的呢?首先通过在数据集中随机抽取问题,使用第一阶段生成的模型,对每个问题生成多个不同的回答,然后再让标注人员对这些回答进行排序。对于标注人员来说,对输出进行排序比从头开始打标要容易得多,因此这一过程可以扩展数据量,大约产生3万3千个训练用的数据。
接下来,再使用这个排序结果来训练奖励模型。对于多个排序结果,两两组合,形成多个训练数据对。RM 模型接受输入后,给出评价回答质量的分数。对于一对训练数据,通过调节参数使得高质量回答的打分比低质量的打分要高。奖励模型学会了为评分高的响应计算更高的奖励,为评分低的回答计算更低的奖励。
第 3 阶段 采用 PPO 强化学习进行优化
PPO (Proximal Policy Optimization,近端策略优化)是一种用于在强化学习中训练 agent 的策略,这里被用来微调 SFT 模型。这一阶段利用第二阶段训练好的奖励模型,靠奖励打分来更新预训练模型参数。在数据集中随机抽取问题后,使用 PPO 模型生成回答,并用上一阶段训练好的 RM 模型计算奖励,给出质量分数,然后用这个奖励来继续更新 PPO 模型。奖励依次传递,由此产生策略梯度,通过强化学习的方式更新 PPO 模型参数。
不断重复第二和第三阶段,通过迭代,会训练出更高质量的 InstructGPT 模型。我们将来自于人类反馈的强化学习简称为 RLHF(reinforcement learning from human feedback):使用人类的偏好作为奖励信号来微调模型。这也是 ChatGPT 在实际对话过程中的输出更符合人类偏好的原因。
ChatGPT 的技术应用场景及示例
总的来说,ChatGPT 有如下几大类技术应用的领域——
⦿ 对话机器人:可以用于生成自然语言对话,实现人机交互。
⦿ 文本生成:可以用于生成摘要、文章、诗歌等文本。
⦿ 问答系统:可以用于回答用户提出的问题,提供相关信息。
⦿ 自动翻译:可以用于实现自动翻译,将文本从一种语言翻译为另一种语言。
⦿ 情感分析:可以用于分析文本的情感倾向,实现情感分析。
⦿ 语音合成:可以用于生成语音,将文本转换为语音。
场景示例 1 NLP 领域
⦿ 生成摘要
⦿ 情感分析(小样本或零样本)
few-shot or zero-shot
⦿ 开放领域问答
⦿ 由文字生成表格
⦿ 数据集生成(小样本或零样本)
few-shot or zero-shot
场景示例 2 代码领域
⦿ 代码生成
⦿ 解释代码
⦿ 知识库生成
Azure OpenAI 官方指南 Vol.02 ChatGPT 作者
Annie Hu 微软云 AI 高级技术专家
相关文章:

Azure OpenAI 官方指南02|ChatGPT 的架构设计与应用实例
ChatGPT 作为即将在微软全球 Azure 公有云平台正式发布的服务,已经迅速成为了众多用户关心的服务之一。而由 OpenAI 发布的 ChatGPT 产品,仅仅上线两个月,就成为互联网历史上最快突破一亿月活的应用。本期从技术角度深度解析 ChatGPT 的架构设…...

RK3568核心板以太网大数据测试报告-万象奥科
1. 测试对象HD-RK3568-IOT 底板基于HD-RK3568-CORE工业级核心板设计(双网口、双CAN、5路串口),接口丰富,适用于工业现场应用需求,亦方便用户评估核心板及CPU的性能。适用于工业自动化控制、人机界面、中小型医疗分析器…...

来 CSDN 三年,我写了一本Python书
大家好,我是朱小五。转眼间已经来 CSDN 3年了,其中给大家一共分享了252篇Python文章。 但这三年,最大的收获还是写了一本Python书! 在这个自动化时代,我们有很多重复无聊的工作要做。想想这些你不再需要一次又一次地做…...

TIA博途中通过SCL语言实现快速排序的具体方法示例
TIA博途中通过SCL语言实现快速排序的具体方法示例 首先,了解一下快速排序的原理: 排序算法的思想非常简单,在待排序的数列中,我们首先要找一个数字作为基准数。为了方便,我们一般选择第 1 个数字作为基准数(其实选择第几个并没有关系)。接下来我们需要将这个待排序的数列…...
第 46 届世界技能大赛浙江省选拔赛“网络安全“项目B模块任务书
第46届世界技能大赛浙江省选拔赛"网络安全"项目B模块(网络安全事件响应、数字取证调查)第46届世界技能大赛浙江省选拔赛"网络安全"项目B模块2.1 第一部分 事件响应2.2 第二部分 数字取证调查2.3 第三部分 应用程序安全第46届世界技能…...
【C】字符串操作函数
初始化字符串 #include <string.h>void *memset(void *s, int c, size_t n); 返回值:s指向哪,返回的指针就指向哪memset函数把s所指的内存地址开始的n个字节都填充为c的值。通常c的值为0,把一块内存区清零。例如定义char buf[10];&…...
【python】 pytest自动化测试框架--selenium,requests,appium自动化工具
一、pytest简介 pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高 二、 pytest 单元测试框架 1、pytest 特点 pytest是python当中的一个单元框架,比unittest更灵…...

Spring boot 实战指南(三):配置事务,整合Elasticsearch、swagger、redis、rabbitMQ
文章目录一、配置事务依赖使用注解二、Elasticsearch创建项目配置maven完善依赖es连接配置实体映射repositoryservicecontroller三、swagger依赖启动类路径匹配配置配置类controller注解四、redis(代码实现)依赖yml配置配置类封装redisTamplate五、rabbi…...

九、Bean的循环依赖问题
1 什么是Bean的循环依赖 A对象中有B属性。B对象中有A属性。这就是循环依赖。我依赖你,你也依赖我。 比如:丈夫类Husband,妻子类Wife。Husband中有Wife的引用。Wife中有Husband的引用。 2 singleton下的set注入产生的循环依赖 丈夫类 pac…...
macOS关闭SIP后,仍无法修改/usr文件夹下文件
发现问题 MacOS 升级到Big Sur后,删除多余的python3文件,发现写不到磁盘,会报OSError: [Errno 30] Read-only file system的错误。经过了解,在Mac OS10.11 之后,苹果公司为了提高系统环境安全,引入了一个内…...

【编程基础之Python】8、Python复合数据类型
【编程基础之Python】8、Python复合数据类型Python复合数据类型列表(List)创建列表访问元素内置方法列表操作元组(Tuple)创建元组访问元素集合(Set)创建集合基本操作其他操作字典(Dictionary&am…...

自动驾驶决策规划-控制方向学习资料总结(附相关资料的链接)
项目仓库 欢迎访问我的Github主页 项目名称说明chhCpp学习C仓库chhRobotics学习自动驾驶、控制理论相关仓库(python实现)chhRobotics_CPP学习自动驾驶、控制理论相关仓库(c实现)chhML 、chh-MachineLearning学习机器学习仓库chhRL学习强化学习仓库chhTricks存放一些有意思的t…...
网络安全岗位介绍——售前工程师
一、工作内容 1、独立完成并配合销售人员引导客户完成方案设计、产品选型、配置报价和能为客户提供安全咨询与方案优化等服务; 2、作为售前工程师,跟踪整个项目的进展,和销售进行配合,协调公司各种资源完成项目中标; 3、编写投标文件的技术…...

nodejs安装和卸载超详细步骤
安装程序①下载完成后,双击安装包,开始安装,使用默认配置安装一直点next即可,安装路径默认在C:\Program Files下,也可以自定义修改②安装路径默认在C:\Program Files下面,也能够自定义修改,而后…...

【Leetcode】移除链表元素 链表的中间节点 链表中倒数第k个节点
目录 一.【Leetcode203】移除链表元素 1.链接 2.题目再现 A.双指针法 B.类尾删法 C.哨兵位 二.【Leetcode876】链表的中间节点 1.链接:链表的中间节点 2.题目再现 3.解法:快慢指针 三.链表中倒数第k个节点 1.链接:链表中倒数第k个…...

快速上手配置firewalld
firewalld使用firewall-cmd命令配置策略。 查看当前firewalld当前服务运行状态 firewall-cmd --state firewalld防火墙状态还用使用如下命令查看状态 systemctl status firewalld 查看所有打开运行的端口 firewall-cmd --zonepublic --list-ports 查看区域信息情况 firewall…...
treap使用mt19937会导致问题原因分析
Treap 是一种使用随机数生成器来维护树形结构的数据结构,而 mt19937 是一种常用的伪随机数生成器。虽然 mt19937 可以生成高质量的随机数序列,但是在 Treap 中使用它可能会导致一些问题。 mt19937 返回的是一个 unsigned int 其中一个问题是࿰…...
tmux和vim
tmux 作用 分屏 允许断开Terminal连接后继续运行进程 结构 一个tmux可以开一堆session tmux: session 1, session 2, session 3 … Session: window 1, window 2, window 3… Window: pane 1, pane 2, pane 3… pane是最小单位,用shell语言编程 操作 输入…...
2023年全国最新保安员精选真题及答案12
百分百题库提供保安员考试试题、保安职业资格考试预测题、保安员考试真题、保安职业资格证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 121.《保安员证》是经由设区的()单位进行发放。 A:市级人民政…...

Hbase的基本概念与架构
一、Hbase的概念 HBase是Hadoop的生态系统,是建立在Hadoop文件系统(HDFS)之上的分布式、面向列的数据库,通过利用Hadoop的文件系统提供容错能力。如果你需要进行实时读写或者随机访问大规模的数据集的时候,请考虑使用H…...

IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...