当前位置: 首页 > news >正文

竞赛保研 基于机器视觉的银行卡识别系统 - opencv python

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的银行卡识别算法设计

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 算法设计流程

银行卡卡号识别技术原理是先对银行卡图像定位,保障获取图像绝对位置后,对图像进行字符分割,然后将分割完成的信息与模型进行比较,从而匹配出与其最相似的数字。主要流程图如图

在这里插入图片描述

1.银行卡号图像
由于银行卡卡号信息涉及个人隐私,作者很难在短时间内获取大量的银行卡进行测试和试验,本文即采用作者个人及模拟银行卡进行卡号识别测试。

2.图像预处理
图像预处理是在获取图像后必须优先进行的技术性处理工作,先对银行卡卡号图像进行色彩处理,具体做法与流程是先将图像灰度化,去掉图像识别上无用的信息,然后利用归一化只保留有效的卡号信息区域。

3.字符分割
字符分割是在对图像进行预处理后,在获取有效图像后对有效区域进行进一步细化处理,将图像分割为最小识别字符单元。

4.字符识别
字符识别是在对银行卡卡号进行字符分割后,利用图像识别技术来对字符进行分析和匹配,本文作者利用的模板匹配方法。

2.1 颜色空间转换

由于银行卡卡号识别与颜色无关,所以银行卡颜色是一个无用因素,我们在图像预处理环节要先将其过滤掉。另外,图像处理中还含有颜色信息,不仅会造成空间浪费,增加运算量,降低系统的整体效率,还会给以后的图像分析和处理带来干扰。因此,有必要利用灰度处理来滤除颜色信息。

灰度处理的实质是将颜色信息转化为亮度信息,即将原始的三维颜色信息还原为一维亮度信息。灰度化的思想是用灰度值g来表示原始彩色图像的R(绿色)、g(红色)和B(蓝色)分量的值,具体的流程设计如图

在这里插入图片描述

2.2 边缘切割

对于采集到的银行卡号图像,由于背景图案的多样性和卡号字体的不同,无法直接对卡号图像进行分割。分割前要准确定位卡号,才能得到有效区域。数字字符所在的区域有许多像素。根据该特征,通过设置阈值来确定原始图像中卡号图像的区域。银行卡图像的切边处理设计如图

在这里插入图片描述

2.3 模板匹配

模板匹配是一种将需要识别的字符与已有固定模板进行匹配的算法技术,该技术是将已经切割好的字符图像逐个与模板数字图像进行对比分析,其原理就是通过数字相似度来衡量两个字符元素,将目标字符元素逐个与模板数字图像进行匹配,找到最接近的数字元素即可。匹配计算量随特征级别的增加而减少。根据第一步得到的特征,选择第二种相关计算方法来解决图像匹配问题。银行卡模板匹配流程设计如图

在这里插入图片描述

2.4 卡号识别

银行卡卡号识别有其独有的特性,因为目前市面上大多数银行卡卡号是凹凸不平的数字形式,如果使用传统的计算机字符识别技术已显然不适用,本文针对银行卡此类特点,研究了解决此类问题的识别方案。从银行卡待识别的凸凹字符进行预处理,然后根据滑块算法逐个窗口对银行卡字符进行匹配识别,卡号识别一般从切割后的图像最左端开始,设定截图选定框大小为64*48像素,因为银行卡所需要识别的字符一般为45像素左右。故而以此方式循环对卡片上所有数字进行匹配、识别,如果最小值大于设置的阈值,我们将认为这里没有字符,这是一个空白区域,并且不输出字符。同时,窗口位置J向下滑动,输出f<19&&j;+20<图像总长度并判断,最后循环得到字符数f、j。

在这里插入图片描述

3 银行卡字符定位 - 算法实现

首先就是将整张银行卡号里面的银行卡号部分进行识别,且分出来,这一个环节学长用的技术就是faster-rcnn的方法

将目标识别部分的银行卡号部门且分出来,进行保存

主程序的代码如下(非完整代码):

#!/usr/bin/env pythonfrom __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport argparseimport osimport cv2import matplotlib.pyplot as pltimport numpy as npimport tensorflow as tffrom lib.config import config as cfgfrom lib.utils.nms_wrapper import nmsfrom lib.utils.test import im_detectfrom lib.nets.vgg16 import vgg16from lib.utils.timer import Timeros.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.8  # 程序最多只能占用指定gpu50%的显存config.gpu_options.allow_growth = True      #程序按需申请内存sess = tf.Session(config = config)CLASSES = ('__background__','lb')NETS = {'vgg16': ('vgg16_faster_rcnn_iter_70000.ckpt',), 'res101': ('res101_faster_rcnn_iter_110000.ckpt',)}DATASETS = {'pascal_voc': ('voc_2007_trainval',), 'pascal_voc_0712': ('voc_2007_trainval+voc_2012_trainval',)}def vis_detections(im, class_name, dets, thresh=0.5):"""Draw detected bounding boxes."""inds = np.where(dets[:, -1] >= thresh)[0]if len(inds) == 0:returnim = im[:, :, (2, 1, 0)]fig, ax = plt.subplots(figsize=(12, 12))ax.imshow(im, aspect='equal')sco=[]for i in inds:score = dets[i, -1]sco.append(score)maxscore=max(sco)# print(maxscore)成绩最大值for i in inds:# print(i)score = dets[i, -1]if score==maxscore:bbox = dets[i, :4]# print(bbox)#目标框的4个坐标img = cv2.imread("data/demo/"+filename)# img = cv2.imread('data/demo/000002.jpg')sp=img.shapewidth = sp[1]if bbox[0]>20 and bbox[2]+20<width:cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0]-20):int(bbox[2])+20] # 裁剪坐标为[y0:y1, x0:x1]if bbox[0]<20 and bbox[2]+20<width:cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])+20] # 裁剪坐标为[y0:y1, x0:x1]if bbox[0] > 20 and bbox[2] + 20 > width:cropped = img[int(bbox[1]):int(bbox[3]), int(bbox[0] - 20):int(bbox[2])]  # 裁剪坐标为[y0:y1, x0:x1]path = 'cut1/'# 重定义图片的大小res = cv2.resize(cropped, (1000, 100), interpolation=cv2.INTER_CUBIC)  # dsize=(2*width,2*height)cv2.imwrite(path+str(i)+filename, res)ax.add_patch(plt.Rectangle((bbox[0], bbox[1]),bbox[2] - bbox[0],bbox[3] - bbox[1], fill=False,edgecolor='red', linewidth=3.5))ax.text(bbox[0], bbox[1] - 2,'{:s} {:.3f}'.format(class_name, score),bbox=dict(facecolor='blue', alpha=0.5),fontsize=14, color='white')ax.set_title(('{} detections with ''p({} | box) >= {:.1f}').format(class_name, class_name,thresh),fontsize=14)plt.axis('off')plt.tight_layout()plt.draw()def demo(sess, net, image_name):"""Detect object classes in an image using pre-computed object proposals."""# Load the demo imageim_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo', image_name)im = cv2.imread(im_file)# Detect all object classes and regress object boundstimer = Timer()timer.tic()scores, boxes = im_detect(sess, net, im)timer.toc()print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0]))# Visualize detections for each classCONF_THRESH = 0.1NMS_THRESH = 0.1for cls_ind, cls in enumerate(CLASSES[1:]):cls_ind += 1  # because we skipped backgroundcls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)]cls_scores = scores[:, cls_ind]# print(cls_scores)#一个300个数的数组#np.newaxis增加维度  np.hstack将数组拼接在一起dets = np.hstack((cls_boxes,cls_scores[:, np.newaxis])).astype(np.float32)keep = nms(dets, NMS_THRESH)dets = dets[keep, :]vis_detections(im, cls, dets, thresh=CONF_THRESH)def parse_args():"""Parse input arguments."""parser = argparse.ArgumentParser(description='Tensorflow Faster R-CNN demo')parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16 res101]',choices=NETS.keys(), default='vgg16')parser.add_argument('--dataset', dest='dataset', help='Trained dataset [pascal_voc pascal_voc_0712]',choices=DATASETS.keys(), default='pascal_voc')args = parser.parse_args()return argsif __name__ == '__main__':args = parse_args()# model pathdemonet = args.demo_netdataset = args.dataset#tfmodel = os.path.join('output', demonet, DATASETS[dataset][0], 'default', NETS[demonet][0])tfmodel = r'./default/voc_2007_trainval/cut1/vgg16_faster_rcnn_iter_8000.ckpt'# 路径异常提醒if not os.path.isfile(tfmodel + '.meta'):print(tfmodel)raise IOError(('{:s} not found.\nDid you download the proper networks from ''our server and place them properly?').format(tfmodel + '.meta'))# set configtfconfig = tf.ConfigProto(allow_soft_placement=True)tfconfig.gpu_options.allow_growth = True# init sessionsess = tf.Session(config=tfconfig)# load networkif demonet == 'vgg16':net = vgg16(batch_size=1)# elif demonet == 'res101':# net = resnetv1(batch_size=1, num_layers=101)else:raise NotImplementedErrornet.create_architecture(sess, "TEST", 2,tag='default', anchor_scales=[8, 16, 32])saver = tf.train.Saver()saver.restore(sess, tfmodel)print('Loaded network {:s}'.format(tfmodel))# # 文件夹下所有图片进行识别# for filename in os.listdir(r'data/demo/'):#     im_names = [filename]#     for im_name in im_names:#         print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')#         print('Demo for data/demo/{}'.format(im_name))#         demo(sess, net, im_name)##     plt.show()# 单一图片进行识别filename = '0001.jpg'im_names = [filename]for im_name in im_names:print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')print('Demo for data/demo/{}'.format(im_name))demo(sess, net, im_name)plt.show()

效果如下:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4 字符分割

将切分出来的图片进行保存,然后就是将其进行切分:

主程序的代码和上面第一步的步骤原理是相同的,不同的就是训练集的不同设置

效果图如下:

在这里插入图片描述

5 银行卡数字识别

仅部分代码:

import osimport tensorflow as tffrom PIL import Imagefrom nets2 import nets_factoryimport numpy as npimport matplotlib.pyplot as plt# 不同字符数量CHAR_SET_LEN = 10# 图片高度IMAGE_HEIGHT = 60# 图片宽度IMAGE_WIDTH = 160# 批次BATCH_SIZE = 1# tfrecord文件存放路径TFRECORD_FILE = r"C:\workspace\Python\Bank_Card_OCR\demo\test_result\tfrecords/1.tfrecords"# placeholderx = tf.placeholder(tf.float32, [None, 224, 224])os.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 程序最多只能占用指定gpu50%的显存config.gpu_options.allow_growth = True      #程序按需申请内存sess = tf.Session(config = config)# 从tfrecord读出数据def read_and_decode(filename):# 根据文件名生成一个队列filename_queue = tf.train.string_input_producer([filename])reader = tf.TFRecordReader()# 返回文件名和文件_, serialized_example = reader.read(filename_queue)features = tf.parse_single_example(serialized_example,features={'image' : tf.FixedLenFeature([], tf.string),'label0': tf.FixedLenFeature([], tf.int64),})# 获取图片数据image = tf.decode_raw(features['image'], tf.uint8)# 没有经过预处理的灰度图image_raw = tf.reshape(image, [224, 224])# tf.train.shuffle_batch必须确定shapeimage = tf.reshape(image, [224, 224])# 图片预处理image = tf.cast(image, tf.float32) / 255.0image = tf.subtract(image, 0.5)image = tf.multiply(image, 2.0)# 获取labellabel0 = tf.cast(features['label0'], tf.int32)return image, image_raw, label0# 获取图片数据和标签image, image_raw, label0 = read_and_decode(TFRECORD_FILE)# 使用shuffle_batch可以随机打乱image_batch, image_raw_batch, label_batch0 = tf.train.shuffle_batch([image, image_raw, label0], batch_size=BATCH_SIZE,capacity=50000, min_after_dequeue=10000, num_threads=1)# 定义网络结构train_network_fn = nets_factory.get_network_fn('alexnet_v2',num_classes=CHAR_SET_LEN * 1,weight_decay=0.0005,is_training=False)with tf.Session() as sess:# inputs: a tensor of size [batch_size, height, width, channels]X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])# 数据输入网络得到输出值logits, end_points = train_network_fn(X)# 预测值logits0 = tf.slice(logits, [0, 0], [-1, 10])predict0 = tf.argmax(logits0, 1)# 初始化sess.run(tf.global_variables_initializer())# 载入训练好的模型saver = tf.train.Saver()saver.restore(sess, '../Cmodels/model/crack_captcha1.model-6000')# saver.restore(sess, '../1/crack_captcha1.model-2500')# 创建一个协调器,管理线程coord = tf.train.Coordinator()# 启动QueueRunner, 此时文件名队列已经进队threads = tf.train.start_queue_runners(sess=sess, coord=coord)for i in range(6):# 获取一个批次的数据和标签b_image, b_image_raw, b_label0 = sess.run([image_batch,image_raw_batch,label_batch0])# 显示图片img = Image.fromarray(b_image_raw[0], 'L')plt.imshow(img)plt.axis('off')plt.show()# 打印标签print('label:', b_label0)# 预测label0 = sess.run([predict0], feed_dict={x: b_image})# 打印预测值print('predict:', label0[0])# 通知其他线程关闭coord.request_stop()# 其他所有线程关闭之后,这一函数才能返回coord.join(threads)

最终实现效果:

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛保研 基于机器视觉的银行卡识别系统 - opencv python

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的银行卡识别算法设计 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng…...

书摘:C 嵌入式系统设计模式 04

本书的原著为&#xff1a;《Design Patterns for Embedded Systems in C ——An Embedded Software Engineering Toolkit 》&#xff0c;讲解的是嵌入式系统设计模式&#xff0c;是一本不可多得的好书。 本系列描述我对书中内容的理解。 实现类的最简单方法是使用文件作为封装…...

C 练习实例16 - 最大公约数和最小公倍数

题目&#xff1a;输入两个正整数a和b&#xff0c;求其最大公约数和最小公倍数 数学&#xff1a;最大公约数*最小公倍数a*b 例如&#xff1a;a16&#xff0c;b20。最小公倍数80&#xff0c;最大公约数4。80*416*20。 算法&#xff1a;辗转相除法&#xff0c;又称欧几里德算法…...

GAN-概念和应用场景

概念和应用 生成对抗网络 &#xff08;GAN&#xff09; 的 18 个令人印象深刻的应用 by 杰森布朗利 on July 12&#xff0c; 2019 in 生成对抗网络110 鸣叫 共享 生成对抗网络 &#xff08;GAN&#xff09; 是一种用于生成建模的神经网络架构。 生成式建模涉及使用模型生成可…...

LeetCode(36)有效的数独 ⭐⭐

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 &#xff0c;验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&#xff08;请参考示例图&#xff09; 注…...

用LCD显示字符‘A‘

#include<reg51.h> //包含单片机寄存器的头文件 #include<intrins.h> //包含_nop_()函数定义的头文件 sbit RSP2^0; //寄存器选择位&#xff0c;将RS位定义为P2.0引脚 sbit RWP2^1; //读写选择位&#xff0c;将RW位定义为P2.1引脚 sbit EP2^2; //使能…...

Zookeeper相关问题及答案(2024)

1、ZooKeeper是什么&#xff1f;它的主要用途是什么&#xff1f; ZooKeeper 是一个由 Apache 预先开发和维护的开源服务器&#xff0c;用于协调分布式应用程序。它是一个集中式服务&#xff0c;为分布式应用提供一致性保障&#xff0c;配置管理&#xff0c;命名&#xff0c;同…...

1.大数据概述

目录 概述hadoophadoop 模块hadoop 发行版apache社区版本CDP(CDHHDP)其它云产商框架选择 hadoop 安装 结束 概述 先了解几个常用的网站 apache 官网hadoop 官网hadoop githubhttps://github.com/apache/xxx [https://github.com/apache/spark (example)] hadoop hadoop 模块…...

NGUI基础-Widget

目录 Widget是什么 Widget组件包含的属性 Pivot Depth Size snap Aspect Free Based on Width Based on Height Widget是什么 在Unity UI系统中&#xff0c;"Widget"是指UI元素的基类&#xff0c;它为UI元素提供了位置、大小和锚点等基本属性。通过使用&qu…...

SpringBoot集成沙箱支付

前言 支付宝沙箱支付&#xff08;Alipay Sandbox Payment&#xff09;是支付宝提供的一个模拟支付环境&#xff0c;用于开发和测试支付宝支付功能的开发者工具。在真实的支付宝环境中进行支付开发和测试可能涉及真实资金和真实用户账户&#xff0c;而沙箱环境则提供了一个安全…...

BUUCTF--gyctf_2020_borrowstack1

这是一题栈迁移的题目&#xff0c;先看看保护&#xff1a; 黑盒测试&#xff1a; 用户可输入两次内容&#xff0c;接着看看IDA中具体程序流程&#xff1a; 我们看到溢出内容只有0x10的空间给我们布局&#xff0c;这显然是不足以我们布置rop的。因此肯定就是栈迁移了。迁到什么地…...

图像分割-Grabcut法(C#)

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 本文的VB版本请访问&#xff1a;图像分割-Grabcut法-CSDN博客 GrabCut是一种基于图像分割的技术&#xff0c;它可以用于将图像中的…...

C# WPF上位机开发(Web API联调)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 很多时候&#xff0c;客户需要开发的不仅仅是一个上位机系统&#xff0c;它还有其他很多配套的系统或设备&#xff0c;比如物流小车、立库、数字孪…...

c语言:用结构体求平均分|练习题

一、题目 用c语言的结构体&#xff0c;求4位学生成绩的平均分 如图&#xff1a; 二、代码截图【带注释】 三、源代码【带注释】 #include <stdio.h> float aver();//声明平均分函数 void printScore();//声明打印函数 //设置结构体&#xff0c; struct student { …...

echarts 仪表盘进度条 相关配置

option {series: [{type: gauge,min: 0,//最大值max: 100, //最小值startAngle: 200,//仪表盘起始角度。圆心 正右手侧为0度&#xff0c;正上方为90度&#xff0c;正左手侧为180度。endAngle: -20,//仪表盘结束角度splitNumber: 100, //仪表盘刻度的分割段数itemStyle: {color…...

Simpy:Python之离散时间序列仿真

Simpy&#xff1a;Python之离散时间序列仿真 文章目录 Simpy&#xff1a;Python之离散时间序列仿真简介基本使用语法简单案例在数据中心中的应用案例 简介 下载地址网站&#xff1a; https://pypi.org/project/simpy/ 有关教程网站&#xff1a; https://simpy.readthedocs.…...

连接GaussDB(DWS)报错:Invalid or unsupported by client SCRAM mechanisms

用postgres方式连接GaussDB(DWS)报错&#xff1a;Invalid or unsupported by client SCRAM mechanisms 报错内容 [2023-12-27 21:43:35] Invalid or unsupported by client SCRAM mechanisms org.postgresql.util.PSQLException: Invalid or unsupported by client SCRAM mec…...

汽车标定技术(十四)--标定数据固化方法简介

目录 1.标定数据固化方法 1.1 基于XCP固化 1.2 基于UDS固化 2. 具体实现形式 2.1 CAN...

2024年关键技术发展战略趋势前瞻

技术趋势在不断变化&#xff0c;但总的趋势是技术日益深入人类生活的方方面面&#xff0c;这些趋势可能会对未来的科技发展和人类生活产生深远影响&#xff0c;以下是预计今年将塑造未来的一些关键技术趋势。 更多的人将采用人工智能和机器学习 人工智能(AI)和机器学习(ML)不…...

Java程序设计——GUI设计

一、目的 通过用户图形界面设计&#xff0c;掌握JavaSwing开发的基本方法。 二、实验内容与设计思想 实验内容&#xff1a; 课本验证实验&#xff1a; Example10_6 图 1 Example10_7 图 2 图 3 Example10_15 图 4 设计思想&#xff1a; ①学生信息管理系统&#xff1a…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...