当前位置: 首页 > news >正文

OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice

Updates on Function Calling were a major highlight at OpenAI DevDay.

In another world,原来的function call都不再正常工作了,必须全部重写。

function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。

干嘛要整个tool出来取代function呢?原因有很多,不再赘述。作为程序员,我们真正关心的是:怎么改?

简单来说,就是整合chatgpt的能力和你个人的能力通过这个tools。怎么做呢?

第一步,定义你的function,最高指示是啥?

import json
from openai import OpenAI
client = OpenAI()# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):"""Get the current weather in a given location"""if "beijing" in location.lower():return json.dumps({"location": location, "temperature": "10", "unit": "celsius"})elif "tokyo" in location.lower():return json.dumps({"location": location, "temperature": "22", "unit": "celsius"})elif "shanghai" in location.lower():return json.dumps({"location": location, "temperature": "21", "unit": "celsius"})elif "san francisco" in location.lower():return json.dumps({"location": location, "temperature": "72", "unit": "fahrenheit"})else:return json.dumps({"location": location, "temperature": "22.22", "unit": "celsius"})

第二步,调用chatgpt模型

让chatgpt干活儿。问问chatgpt啥情况

def run_conversation():# Step 1: send the conversation and available functions to the modelmessages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, Beijing and Paris?"}]tools = [{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather in a given location","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g. San Francisco, CA",},"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},},"required": ["location"],},},}]response = client.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,tools = tools,tool_choice="auto",  # auto is default, but we'll be explicit)response_message = response.choices[0].messagetool_calls = response_message.tool_calls

tool_choice参数让chatgpt模型自行决断是否需要function介入。
response是返回的object,message里包含一个tool_calls array.

tool_calls array The tool calls generated by the model, such as function calls.
id string The ID of the tool call.
type string The type of the tool. Currently, only function is supported.
function object:  The function that the model called.name: string The name of the function to call.arguments: string The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.

第三步,chatgpt判断如果需要function介入,传回一个json对象。

    # Step 2: check if the model wanted to call a functionif tool_calls:# Step 3: call the function# Note: the JSON response may not always be valid; be sure to handle errorsavailable_functions = {"get_current_weather": get_current_weather,}  # only one function in this example, but you can have multiplemessages.append(response_message)  # extend conversation with assistant's reply# Step 4: send the info for each function call and function response to the modelfor tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(location=function_args.get("location"),unit=function_args.get("unit"),)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,})  # extend conversation with function responsesecond_response = openai.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,)  # get a new response from the model where it can see the function responsereturn second_response
print(run_conversation())    

我们把这个传回的json,叠加在message里面,再调用chatgpt模型。得出结果:

ChatCompletion(id='chatcmpl-8ciuEU38jFKJcjEbQH66ejGNnp0kO', 
choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(
content="Currently, the weather in San Francisco, California is 72°F (22°C) with a slight breeze. In Tokyo, Japan, the temperature is 22°C with partly cloudy skies. In Beijing, China, it's 10°C with overcast conditions. And in Paris, France, the temperature is 22.22°C with clear skies.", 
role='assistant', function_call=None, tool_calls=None))], 
created=1704239774, model='gpt-3.5-turbo-1106', object='chat.completion', system_fingerprint='fp_772e8125bb', usage=CompletionUsage(completion_tokens=71, prompt_tokens=229, total_tokens=300))

tool和tool_choice,取代了过去的function和function calling。
在这里插入图片描述

相关文章:

OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice

Updates on Function Calling were a major highlight at OpenAI DevDay. In another world,原来的function call都不再正常工作了,必须全部重写。 function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。 干嘛…...

二叉搜索树与双向链表

解题思路一: /** public class TreeNode {int val 0;TreeNode left null;TreeNode right null;public TreeNode(int val) {this.val val;} } */ // 一定要用自己的理解真正弄出来才行,否则没有用! // 再次提醒,计算机这种工科…...

uniapp中组件库的Checkbox 复选框 的丰富使用方法

目录 #平台差异说明 #基本使用 #自定义形状 #禁用checkbox #自定义形状 #自定义颜色 #横向排列形式 #横向两端排列形式 API #Checkbox Props #CheckboxGroup Props #CheckboxGroup Event 复选框组件一般用于需要多个选择的场景,该组件功能完整&#xff…...

Spring Cloud + Vue前后端分离-第10章 基于阿里云OSS的文件上传

源代码在GitHub - 629y/course: Spring Cloud Vue前后端分离-在线课程 Spring Cloud Vue前后端分离-第10章 基于阿里云OSS的文件上传 前面介绍的文件上传是基于本地文件服务器的文件上传,但是自己搭文件服务器会有很多运维的问题,比如磁盘满了要扩容…...

C++ 中的耗时计算函数

#include <time.h>int clock_gettime (clockid_t clock_id, struct timespec *tp) 获取当前 clock_id 的时钟值并存储在 tp 中。 其中 tp 是一个 timespec 结构体&#xff0c;在 time.h 头文件中定义&#xff1a; #include <time.h>:struct timespec {time_t t…...

【Element】el-form和el-table嵌套实现表格编辑并提交表单校验

一、背景 页面需要用到表格采集用户数据&#xff0c;提交时进行表单校验&#xff1b;即表格中嵌套着表单&#xff0c;保存时进行表单校验 二、功能实现 2.1、el-form和el-table嵌套说明 ① :model"formData" 给表单绑定数据&#xff0c;formData是表单的数据对象 …...

初识Winform

什么是winform&#xff1f; WinForms&#xff08;Windows Forms&#xff09;是Microsoft .NET框架中的一个用户界面&#xff08;UI&#xff09;技术&#xff0c;用于创建Windows应用程序。它提供了一组用于构建图形用户界面的类和控件&#xff0c;以及与用户交互的事件模型。 …...

Redis:原理速成+项目实战——Redis实战5(互斥锁、逻辑过期解决缓存击穿问题)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理速成项目实战——Redis实战4&#xff08;解决Redis缓存穿透、雪崩、击穿&#xff09; &#x1f4da;订阅专…...

前端优化之一:dns预获取 dns-prefetch 提升页面载入速度

问题&#xff1a;怎么做到dns域解析&#xff1f; 用于优化网站页面的图片 问题&#xff1a;怎么提升网站性能&#xff1f; dns域解析&#xff0c;是提升网站的一个办法。 DNS Prefetch&#xff0c;即DNS预获取&#xff0c;是前端优化的一部分。 一般来说&#xff0c;在前端…...

C语言中一些基本数据类型的典型大小

char&#xff1a;通常是1字节。表示一个字符。int&#xff1a;通常在现代系统中是4字节&#xff08;但这取决于编译器和架构&#xff0c;有时可能是2字节&#xff09;。float&#xff1a;通常是4字节。double&#xff1a;通常是8字节。short 和 short int&#xff1a;通常是2字…...

[C/C++]排序算法 快速排序 (递归与非递归)

目录 &#x1f6a9;概念: &#x1f6a9;实现: ⚡1.hoare ⚡2.挖坑法 ⚡3.双指针法 &#x1f6a9;快速排序递归实现 &#x1f6a9;快速排序非递归实现 &#x1f6a9;概念: 通过一趟排序将要排序的数据分割成独立的两部分&#xff0c;其中一部分的所有数据比另一部分的所有…...

『年度总结』逐梦编程之始:我的2023学习回顾与展望

目录 前言 我与Python 我与C语言 第一篇正式博客&#xff1a; 第二篇正式博客&#xff08;扫雷&#xff09;&#xff1a; 指针学习笔记: C语言学习笔记&#xff1a; 我与数据结构&#xff1a; yuan 这篇博客&#xff0c;我将回顾2023年编程之旅的起点&#xff0c;同时展…...

MyBatis学习二:Mapper代理开发、配置文件完成增删改查、注解开发

前言 公司要求没办法&#xff0c;前端也要了解一下后端知识&#xff0c;这里记录一下自己的学习 学习教程&#xff1a;黑马mybatis教程全套视频教程&#xff0c;2天Mybatis框架从入门到精通 文档&#xff1a; https://mybatis.net.cn/index.html Mapper代理开发 目的 解决…...

【React系列】受控非受控组件

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. refs 的使用 在React的开发模式中&#xff0c;通常情况下不需要、也不建议直接操作DOM原生&#xff0c;但是某些…...

OpenCV-Python(22):2D直方图

目标 了解图像的2D直方图绘制2D直方图 介绍 在前面的部分我们介绍了如何绘制一维直方图&#xff0c;之所以称为一维&#xff0c;是因为我们只考虑了图像的一个特征&#xff1a;灰度值。但是在2D 直方图中我们就需要考虑两个图像特征。对于彩色图像的直方图通常情况下我们需要…...

Kubernetes 100个常用命令

本文简单总结关于使用 Kubectl 进行 Kubernetes 诊断的指南。列出了 100 个 Kubectl 命令&#xff0c;这些命令对于诊断 Kubernetes 集群中的问题非常有用。这些问题包括但不限于&#xff1a; 集群信息 Pod 诊断 服务诊断 部署诊断 网络诊断 持久卷和持久卷声明诊断 资源…...

labuladong日常刷题-差分数组 | LeetCode 1109航班预定统计 | 花式遍历 151反转字符串里的单词

差分数组–前缀和数组的升级 LeetCode 1109 航班预定统计 2024.1.1 题目链接labuladong讲解[链接] class Solution { public:vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {//构建航班人数数组&#xff0c;数组大小为n,初…...

HbuilderX中的git的使用

原文链接https://blog.csdn.net/Aom_yt/article/details/119924356...

LeetCode每日一题 | 1944. 队列中可以看到的人数

文章目录 队列中可以看到的人数题目描述问题分析程序代码&#xff08;Golang 版本&#xff09; 队列中可以看到的人数 题目描述 原题链接 有 n 个人排成一个队列&#xff0c;从左到右 编号为 0 到 n - 1 。给你以一个整数数组 heights &#xff0c;每个整数 互不相同&#xff…...

React16源码: JSX2JS及React.createElement源码实现

JSX 到 Javascript 的转换 React中的 JSX 类似于 Vue中的template模板文件&#xff0c;Vue是基于编译时将template模板转换成render函数在React中&#xff0c;JSX是类似于html和javascript混编的语法&#xff0c;而javascript是真的javascript, html并非真的html它的可阅读性可…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...