OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice
Updates on Function Calling were a major highlight at OpenAI DevDay.
In another world,原来的function call都不再正常工作了,必须全部重写。
function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。
干嘛要整个tool出来取代function呢?原因有很多,不再赘述。作为程序员,我们真正关心的是:怎么改?
简单来说,就是整合chatgpt的能力和你个人的能力通过这个tools。怎么做呢?
第一步,定义你的function,最高指示是啥?
import json
from openai import OpenAI
client = OpenAI()# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):"""Get the current weather in a given location"""if "beijing" in location.lower():return json.dumps({"location": location, "temperature": "10", "unit": "celsius"})elif "tokyo" in location.lower():return json.dumps({"location": location, "temperature": "22", "unit": "celsius"})elif "shanghai" in location.lower():return json.dumps({"location": location, "temperature": "21", "unit": "celsius"})elif "san francisco" in location.lower():return json.dumps({"location": location, "temperature": "72", "unit": "fahrenheit"})else:return json.dumps({"location": location, "temperature": "22.22", "unit": "celsius"})
第二步,调用chatgpt模型
让chatgpt干活儿。问问chatgpt啥情况
def run_conversation():# Step 1: send the conversation and available functions to the modelmessages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, Beijing and Paris?"}]tools = [{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather in a given location","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g. San Francisco, CA",},"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},},"required": ["location"],},},}]response = client.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,tools = tools,tool_choice="auto", # auto is default, but we'll be explicit)response_message = response.choices[0].messagetool_calls = response_message.tool_calls
tool_choice参数让chatgpt模型自行决断是否需要function介入。
response是返回的object,message里包含一个tool_calls array.
tool_calls array The tool calls generated by the model, such as function calls.
id string The ID of the tool call.
type string The type of the tool. Currently, only function is supported.
function object: The function that the model called.name: string The name of the function to call.arguments: string The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
第三步,chatgpt判断如果需要function介入,传回一个json对象。
# Step 2: check if the model wanted to call a functionif tool_calls:# Step 3: call the function# Note: the JSON response may not always be valid; be sure to handle errorsavailable_functions = {"get_current_weather": get_current_weather,} # only one function in this example, but you can have multiplemessages.append(response_message) # extend conversation with assistant's reply# Step 4: send the info for each function call and function response to the modelfor tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(location=function_args.get("location"),unit=function_args.get("unit"),)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,}) # extend conversation with function responsesecond_response = openai.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,) # get a new response from the model where it can see the function responsereturn second_response
print(run_conversation())
我们把这个传回的json,叠加在message里面,再调用chatgpt模型。得出结果:
ChatCompletion(id='chatcmpl-8ciuEU38jFKJcjEbQH66ejGNnp0kO',
choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(
content="Currently, the weather in San Francisco, California is 72°F (22°C) with a slight breeze. In Tokyo, Japan, the temperature is 22°C with partly cloudy skies. In Beijing, China, it's 10°C with overcast conditions. And in Paris, France, the temperature is 22.22°C with clear skies.",
role='assistant', function_call=None, tool_calls=None))],
created=1704239774, model='gpt-3.5-turbo-1106', object='chat.completion', system_fingerprint='fp_772e8125bb', usage=CompletionUsage(completion_tokens=71, prompt_tokens=229, total_tokens=300))
tool和tool_choice,取代了过去的function和function calling。

相关文章:
OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice
Updates on Function Calling were a major highlight at OpenAI DevDay. In another world,原来的function call都不再正常工作了,必须全部重写。 function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。 干嘛…...
二叉搜索树与双向链表
解题思路一: /** public class TreeNode {int val 0;TreeNode left null;TreeNode right null;public TreeNode(int val) {this.val val;} } */ // 一定要用自己的理解真正弄出来才行,否则没有用! // 再次提醒,计算机这种工科…...
uniapp中组件库的Checkbox 复选框 的丰富使用方法
目录 #平台差异说明 #基本使用 #自定义形状 #禁用checkbox #自定义形状 #自定义颜色 #横向排列形式 #横向两端排列形式 API #Checkbox Props #CheckboxGroup Props #CheckboxGroup Event 复选框组件一般用于需要多个选择的场景,该组件功能完整ÿ…...
Spring Cloud + Vue前后端分离-第10章 基于阿里云OSS的文件上传
源代码在GitHub - 629y/course: Spring Cloud Vue前后端分离-在线课程 Spring Cloud Vue前后端分离-第10章 基于阿里云OSS的文件上传 前面介绍的文件上传是基于本地文件服务器的文件上传,但是自己搭文件服务器会有很多运维的问题,比如磁盘满了要扩容…...
C++ 中的耗时计算函数
#include <time.h>int clock_gettime (clockid_t clock_id, struct timespec *tp) 获取当前 clock_id 的时钟值并存储在 tp 中。 其中 tp 是一个 timespec 结构体,在 time.h 头文件中定义: #include <time.h>:struct timespec {time_t t…...
【Element】el-form和el-table嵌套实现表格编辑并提交表单校验
一、背景 页面需要用到表格采集用户数据,提交时进行表单校验;即表格中嵌套着表单,保存时进行表单校验 二、功能实现 2.1、el-form和el-table嵌套说明 ① :model"formData" 给表单绑定数据,formData是表单的数据对象 …...
初识Winform
什么是winform? WinForms(Windows Forms)是Microsoft .NET框架中的一个用户界面(UI)技术,用于创建Windows应用程序。它提供了一组用于构建图形用户界面的类和控件,以及与用户交互的事件模型。 …...
Redis:原理速成+项目实战——Redis实战5(互斥锁、逻辑过期解决缓存击穿问题)
👨🎓作者简介:一位大四、研0学生,正在努力准备大四暑假的实习 🌌上期文章:Redis:原理速成项目实战——Redis实战4(解决Redis缓存穿透、雪崩、击穿) 📚订阅专…...
前端优化之一:dns预获取 dns-prefetch 提升页面载入速度
问题:怎么做到dns域解析? 用于优化网站页面的图片 问题:怎么提升网站性能? dns域解析,是提升网站的一个办法。 DNS Prefetch,即DNS预获取,是前端优化的一部分。 一般来说,在前端…...
C语言中一些基本数据类型的典型大小
char:通常是1字节。表示一个字符。int:通常在现代系统中是4字节(但这取决于编译器和架构,有时可能是2字节)。float:通常是4字节。double:通常是8字节。short 和 short int:通常是2字…...
[C/C++]排序算法 快速排序 (递归与非递归)
目录 🚩概念: 🚩实现: ⚡1.hoare ⚡2.挖坑法 ⚡3.双指针法 🚩快速排序递归实现 🚩快速排序非递归实现 🚩概念: 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据比另一部分的所有…...
『年度总结』逐梦编程之始:我的2023学习回顾与展望
目录 前言 我与Python 我与C语言 第一篇正式博客: 第二篇正式博客(扫雷): 指针学习笔记: C语言学习笔记: 我与数据结构: yuan 这篇博客,我将回顾2023年编程之旅的起点,同时展…...
MyBatis学习二:Mapper代理开发、配置文件完成增删改查、注解开发
前言 公司要求没办法,前端也要了解一下后端知识,这里记录一下自己的学习 学习教程:黑马mybatis教程全套视频教程,2天Mybatis框架从入门到精通 文档: https://mybatis.net.cn/index.html Mapper代理开发 目的 解决…...
【React系列】受控非受控组件
本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. refs 的使用 在React的开发模式中,通常情况下不需要、也不建议直接操作DOM原生,但是某些…...
OpenCV-Python(22):2D直方图
目标 了解图像的2D直方图绘制2D直方图 介绍 在前面的部分我们介绍了如何绘制一维直方图,之所以称为一维,是因为我们只考虑了图像的一个特征:灰度值。但是在2D 直方图中我们就需要考虑两个图像特征。对于彩色图像的直方图通常情况下我们需要…...
Kubernetes 100个常用命令
本文简单总结关于使用 Kubectl 进行 Kubernetes 诊断的指南。列出了 100 个 Kubectl 命令,这些命令对于诊断 Kubernetes 集群中的问题非常有用。这些问题包括但不限于: 集群信息 Pod 诊断 服务诊断 部署诊断 网络诊断 持久卷和持久卷声明诊断 资源…...
labuladong日常刷题-差分数组 | LeetCode 1109航班预定统计 | 花式遍历 151反转字符串里的单词
差分数组–前缀和数组的升级 LeetCode 1109 航班预定统计 2024.1.1 题目链接labuladong讲解[链接] class Solution { public:vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {//构建航班人数数组,数组大小为n,初…...
HbuilderX中的git的使用
原文链接https://blog.csdn.net/Aom_yt/article/details/119924356...
LeetCode每日一题 | 1944. 队列中可以看到的人数
文章目录 队列中可以看到的人数题目描述问题分析程序代码(Golang 版本) 队列中可以看到的人数 题目描述 原题链接 有 n 个人排成一个队列,从左到右 编号为 0 到 n - 1 。给你以一个整数数组 heights ,每个整数 互不相同ÿ…...
React16源码: JSX2JS及React.createElement源码实现
JSX 到 Javascript 的转换 React中的 JSX 类似于 Vue中的template模板文件,Vue是基于编译时将template模板转换成render函数在React中,JSX是类似于html和javascript混编的语法,而javascript是真的javascript, html并非真的html它的可阅读性可…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
