当前位置: 首页 > news >正文

3D Gaussian Splatting复现

        最近3D Gaussian Splatting很火,网上有很多复现过程,大部分都是在Windows上的。Linux上配置环境会方便简单一点,这里记录一下我在Linux上复现的过程。

        Windows下的环境配置和编译,建议看这个up主的视频配置,讲解的很细致:3D Gaussian Splatting從0開始到Unreal與Unity-( pzman )_哔哩哔哩_bilibili


预先准备

        一支MP4格式的视频,可以是你用手机拍摄的任何一个你想要重建的物体或者环境的视频。

        Gaussian Splatting的源码,源码地址:GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"


一、环境配置与准备

1.下载Gaussian Splatting的源码

git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive

2.安装CUDA

        这个这里就不赘述了,需要注意的是官方说使用11.6版本的CUDA会有问题,。官方使用的是11.8版本的,所以需要确保你的CUDA版本高于11.8,使用下面的命令查看你的CUDA版本:

nvcc --version

 3.使用conda安装依赖库,并创建虚拟环境

        首先进入上面从GitHub上clone下载来的gaussian-splatting源码路径,在里面我们可以看到一个 environment.yml 文件,里面提供了需要的依赖库的名字,直接使用下面的命令执行会自动为你创建一个名为 gaussian_splatting 的conda虚拟环境,并开始安装所需要的依赖库:

conda env create --file environment.yml

        等待安装完毕后,激活创建的conda虚拟环境:

conda activate gaussian_splatting

 4.安装FFmpeg

        这里主要是为了提取拍摄的视频中的图片,如果有数据集的话也可以不用安装。

        由于安装别的依赖的时候,可能会装了FFmpeg,但是使用起来会有问题。这里建议先把环境中使用FFmpeg删除再重新安装:

// 删除所有安装的 ffmpeg
sudo apt-get remove ffmpeg
sudo apt-get purge ffmpeg
// 删除 Anaconda ffmpeg 模块
conda remove ffmpeg
重新安装
sudo apt-get install ffmpeg

 5.安装colmap

        这里安装colmap是为了从图片生成点云,因为gaussian splatting的输入是点云。如果有colmap生成的数据集或者NeRF格式的数据集也可以直接使用。

        编译安装colmap可以查看我的另一篇博客:Linux 编译安装colmap_linux colmap-CSDN博客

6.安装viewers

        这个工具是最后查看我们训练完后的结果的可视化,这里建议下载Windows下的,把Linux下的训练结果放到Windows下查看。因为Linux下需要源码编译,比较麻烦。

        Windows安装包下载地址:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip


二、开始训练

        1.首先进入Gaussian Splatting源码的路径下,然后创建一个data文件夹,并把准备的MP4格式的视频放到data文件夹下,我这里视频的名字为input.MP4。

        2.使用FFmpeg截取视频帧为图片,在data目录下创建input目录,使用下面的代码可以截取视频帧并把图片放到input目录下:

ffmpeg -i input.mp4 -vf "setpts=0.2*PTS" input/input_%4d.jpg

        3.进入到源码的目录下,使用源码中的 convert.py 文件生成点云,其中就是调用colmap生成点云,所以需要先安装好colmap,运行后的data文件夹中目录结构如下:

python convert.py -s data

        4.开始训练,接下来等待训练完即可:

python train.py -s data -m data/output

        训练完成后,可以看到在data文件夹下生成了一个output文件夹,里面就是我们的训练结果。input.ply是描述重建后的顶点和表面的模型文件,point_cloud下是7000步和30000步时的训练结果:

        5.最后一步,可视化训练的结果。

        这里是在Windows下使用的官方提供的Viewer工具,下载链接放在上面了,下载完后只要解压就行了。解压后是一个名字是viewers的文件夹,进入这个文件夹,然后把训练结果的output文件夹放在下面,在该文件夹下打开cmd,使用下面的命令运行:

.\bin\SIBR_gaussianViewer_app -m output

         大功告成!

相关文章:

3D Gaussian Splatting复现

最近3D Gaussian Splatting很火,网上有很多复现过程,大部分都是在Windows上的。Linux上配置环境会方便简单一点,这里记录一下我在Linux上复现的过程。 Windows下的环境配置和编译,建议看这个up主的视频配置,讲解的很细…...

tf-idf +逻辑回归来识别垃圾文本

引入相关包 from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, auc, roc_auc_score import joblib import os import pandas as pd from sklearn.model_select…...

Oracle - 数据库的实例、表空间、用户、表之间关系

Oracle是一种广泛使用的关系型数据库管理系统,它具有高性能、高可靠性、高安全性等特点。1Oracle数据库的结构和组成是一个复杂而又有趣的话题,本文将介绍Oracle数据库的四个基本概念:数据库、实例、表空间和用户,以及它们之间的关…...

Java面试项目推荐,异构数据源数据流转服务DatalinkX

前言 作为一个年迈的夹娃练习生,每次到了春招秋招面试实习生时都能看到一批简历,十个简历里得有七八个是写商城或者外卖项目。 不由得想到了我大四那会,由于没有啥项目经验,又想借一个质量高点的项目通过简历初筛,就…...

一、Vue3组合式基础[ref、reactive]

一、ref 解释:ref是Vue3通过ES6的Proxy实现的响应式数据,其与基本的js类型不同,其为响应式数据,值得注意的是,reactive可以算是ref的子集,ref一般用来处理js的基本数据类型如整型、字符型等等(也可以用来处…...

unity网页远程手机游戏Inspector面板proxima

https://www.unityproxima.com/docs...

聊聊spring事务12种场景,太坑了

前言 对于从事java开发工作的同学来说,spring的事务肯定再熟悉不过了。 在某些业务场景下,如果一个请求中,需要同时写入多张表的数据。为了保证操作的原子性(要么同时成功,要么同时失败),避免数…...

mysql 数据查重与查重分页

起因是公司的crm录入不规范,有重复数据。 之后考虑到需要手动处理,首先需要自动找出重复的数据 查重要求: 存在多个不允许重复的字段,任一字段重复,则判断为同一个客户。划分到同一重复组中。 查重sql如下 SELECT C…...

微服务(12)

目录 56.k8s是怎么进行服务注册的? 57.k8s集群外流量怎么访问Pod? 58.k8s数据持久化的方式有哪些? 59.Relica Set和Replication Controller之间有什么区别? 60.什么是Service Mesh(服务网格)&#x…...

​iOS实时查看App运行日志

目录 一、设备连接 二、使用克魔助手查看日志 三、过滤我们自己App的日志 📝 摘要: 本文介绍了如何在iOS iPhone设备上实时查看输出在console控制台的日志。通过克魔助手工具,我们可以连接手机并方便地筛选我们自己App的日志。 &#x1f4…...

【计算机毕业设计】SSM健身房管理系统

项目介绍 本项目为后台管理系统,主要分为管理员与用户两种角色; 登录页面,管理员首页,会员增删改查,教练增删改查,运动器材管理等功能。 用户角色包含以下功能: 用户登录页面,用户首页,选择课程,选择教练等功能。 环境需要 1.运行环境&a…...

嵌入式Linux之MX6ULL裸机开发学习笔记(IMX启动方式-启动设备的选择)

一,硬件启动方式选择 1.启动方式的选择 6ull支持多种启动方式。 比如可以从 SD/EMMC、 NAND Flash、 QSPI Flash等启动。 6ull是怎么支持多种外置flash启动程序的。 1.启动方式选择: BOOT_MODE0 and BOOT_MODE1,这两个是两个IO来控制的,…...

K8S Ingress-Nginx导出TCP端口

ingress-nginx导出TCP端口 Exposing TCP and UDP services - Ingress-Nginx Controllerhttps://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/exposing-tcp-udp-services.md helm upgrade ingress-nginx导出redis 6379端口(这种方式最简单&…...

索引类型-哈希索引

一. 前言 前面我们简单介绍了数据库的B-Tree索引,下面我们介绍另一种索引类型-哈希索引。 二. 哈希索引的简介 哈希索引(hash index) 基于哈希表实现,只有精确匹配索引所有列的查询才有效。对于每一行数据,存储引擎都会对所有索引列计算一个…...

uniapp中组件库的Textarea 文本域的丰富使用方法

目录 #平台差异说明 #基本使用 #字数统计 #自动增高 #禁用状态 #下划线模式 #格式化处理 API #List Props #Methods #List Events 文本域此组件满足了可能出现的表单信息补充,编辑等实际逻辑的功能,内置了字数校验等 注意: 由于…...

LLM、AGI、多模态AI 篇三:微调模型

文章目录 系列LLM的几个应用层次Lora技术其他微调技术FreezeP-TuningQLoRA指令设计构建高质量的数据微调步骤系列 LLM、AGI、多模态AI 篇一:开源大语言模型简记 LLM、AGI、多模态AI 篇二:Prompt编写技巧 LLM、AGI、多模态AI 篇三...

IPC之十二:使用libdbus在D-Bus上异步发送/接收信号的实例

IPC 是 Linux 编程中一个重要的概念,IPC 有多种方式,本 IPC 系列文章的前十篇介绍了几乎所有的常用的 IPC 方法,每种方法都给出了具体实例,前面的文章里介绍了 D-Bus 的基本概念以及调用远程方法的实例,本文介绍 D-Bus…...

ES6之生成器(Generator)

✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…...

Matlab技巧[绘画逻辑分析仪产生的数据]

绘画逻辑分析仪产生的数据 逻分上抓到了ADC数字信号,一共是10Bit,12MHZ的波形: 这里用并口协议已经解析出数据: 导出csv表格数据(这个数据为补码,所以要做数据转换): 现在要把这个数据绘制成波形,用Python和表格直接绘制速度太慢了,转了一圈发现MATLAB很好用,操作方法如下:…...

Go面试题学习

1.并发安全性 Go语言中的并发安全性是什么?如何确保并发安全性? 并发安全性是指在并发编程中,多个goroutine对共享资源的访问不会导致数据竞争和不确定的结果。 使用互斥锁(Mutex):通过使用互斥锁来保护…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...

数据可视化交互

目录 【实验目的】 【实验原理】 【实验环境】 【实验步骤】 一、安装 pyecharts 二、下载数据 三、实验任务 实验 1&#xff1a;AQI 横向对比条形图 代码说明&#xff1a; 运行结果&#xff1a; 实验 2&#xff1a;AQI 等级分布饼图 实验 3&#xff1a;多城市 AQI…...

RocketMQ 客户端负载均衡机制详解及最佳实践

延伸阅读&#xff1a;&#x1f50d;「RocketMQ 中文社区」 持续更新源码解析/最佳实践&#xff0c;提供 RocketMQ 专家 AI 答疑服务 前言 本文介绍 RocketMQ 负载均衡机制&#xff0c;主要涉及负载均衡发生的时机、客户端负载均衡对消费的影响&#xff08;消息堆积/消费毛刺等…...