复试 || 就业day04(2024.01.05)项目一
文章目录
- 前言
- 线性回归房价预测
- 加载数据
- 数据查看
- 数据拆分
- 数据建模
- 模型的验证、应用
- 模型的评估
- 总结
前言
💫你好,我是辰chen,本文旨在准备考研复试或就业
💫本文内容来自某机构网课,是我为复试准备的第一个项目
💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容
🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib
以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:
💥ACM-ICPC算法汇总【基础篇】
💥ACM-ICPC算法汇总【提高篇】
💥AIoT(人工智能+物联网)
💥考研
💥CSP认证考试历年题解
线性回归房价预测
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LinearRegression
加载数据
boston = datasets.load_boston()X = boston['data'] # 数据,这些数据影响了房价
y = boston['target'] # 房价,24代表2 4W dollar # CRIM 犯罪, NOX 空气污染, TAX 税收
feature_names = boston['feature_names'] # 具体指标
feature_names

数据查看
# 506表示506统计样本,13表示影响房价的13个属性
X.shape # 506行,每一行的13个数值乘以一个权重和一个截距就是相当于506个13元一次方程
# 我们的目的就是去解这13个权重和1个截距
# 506个价格
# X -> y 是一,一对应的
# 数据 -> 目标值 对应
y.shape

数据拆分
# 506个数据,样本
# 拆分成为两份,一份80%训练数据;剩下的20%验证数据
# 其中的80%交给算法,线性回归,学习、总结、你和函数
# 20%的作用为验证,测一测,看看算法学习完80%的数据后是否准确# 创建一个包含0到505的整数的一维NumPy数组,并将其分配给变量index
index = np.arange(506)
# 打乱顺序
np.random.shuffle(index)
# 506 * 0.8 = 404.8 ≈ 405,据此用切片划分训练样本和测试样本
train_index = index[:405]
test_index = index[405:]X_train = X[train_index]
y_train = y[train_index]
display(X_train.shape, y_train.shape)
# 20%的测试数据
X_test = X[test_index]
y_test = y[test_index]display(X_test.shape, y_test.shape)

数据建模
model = LinearRegression(fit_intercept = True) # 允许计算截距(默认也是True)model.fit(X_train, y_train)display(model.coef_, model.intercept_)
# 不想看科学计数法:
np.set_printoptions(suppress = True)
# 数值为正:正相关,如面积越大房价越高
# 数值为负:负相关,如犯罪率越高房价越低
display(model.coef_, model.intercept_)

模型的验证、应用
# 模型的预测结果
y_ = model.predict(X_test).round(2) # 保留2位小数
y_[:30] # 查看前30个值
# 查看真实值的前30个
y_test[:30]

模型的评估
# 最大值是1,可以小于0(评分太差了,是负数)
# 数值越接近1,说明算法越优秀
model.score(X_test, y_test)
# 不妨再来看一下80%数据的得分,结果一般来说是要高一些的
model.score(X_train, y_train)
# 当然,评价标准不止有一个,如之前学过的最小二乘法
# 最小二乘法
from sklearn.metrics import mean_squared_error
# 这个是误差,误差是越小越好
# 测试那20%的数据
y_pred = model.predict(X_test) # 其实y_也可,只不过上面处理的y_已经保留了2位小数了,效果差一点点
mean_squared_error(y_test, y_pred) # 也可以写成 mean_squared_error(y_test, y_) 问题不大
# 再来计算一下那80%的数据,得到的值一般来说是要低些
mean_squared_error(y_train, model.predict(X_train))

总结
完整代码:
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LinearRegression boston = datasets.load_boston()X = boston['data'] # 数据,这些数据影响了房价
y = boston['target'] # 房价,24代表2 4W dollar
# X.shape : (506, 13), y.shape : (506, )# CRIM 犯罪, NOX 空气污染, TAX 税收
feature_names = boston['feature_names'] # 具体指标# 创建一个包含0到505的整数的一维NumPy数组,并将其分配给变量index
index = np.arange(506)
# 打乱顺序
np.random.shuffle(index)# 506个数据,样本
# 拆分成为两份,一份80%训练数据;剩下的20%验证数据
# 其中的80%交给算法,线性回归,学习、总结、你和函数
# 20%的作用为验证,测一测,看看算法学习完80%的数据后是否准确
# 506 * 0.8 = 404.8 ≈ 405,据此用切片划分训练样本和测试样本
train_index = index[:405]
X_train = X[train_index]
y_train = y[train_index]# 20%的测试数据
test_index = index[405:]
X_test = X[test_index]
y_test = y[test_index]# 不想看科学计数法:
np.set_printoptions(suppress = True)
model = LinearRegression(fit_intercept = True) # 允许计算截距(默认也是True)
# 数值为正:正相关,如面积越大房价越高
# 数值为负:负相关,如犯罪率越高房价越低
model.fit(X_train, y_train)# 模型的预测结果
y_ = model.predict(X_test).round(2) # 保留2位小数
# 最大值是1,可以小于0(评分太差了,是负数)
# 数值越接近1,说明算法越优秀
model.score(X_test, y_test)# 不妨再来看一下80%数据的得分,结果一般来说是要高一些的
model.score(X_train, y_train)# 当然,评价标准不止有一个,如之前学过的最小二乘法
# 最小二乘法
from sklearn.metrics import mean_squared_error
# 这个是误差,误差是越小越好
# 测试那20%的数据
y_pred = model.predict(X_test) # 其实y_也可,只不过上面处理的y_已经保留了2位小数了,效果差一点点
mean_squared_error(y_test, y_pred) # 也可以写成 mean_squared_error(y_test, y_) 问题不大
# 再来计算一下那80%的数据,得到的值一般来说是要低些
mean_squared_error(y_train, model.predict(X_train))

相关文章:
复试 || 就业day04(2024.01.05)项目一
文章目录 前言线性回归房价预测加载数据数据查看数据拆分数据建模模型的验证、应用模型的评估 总结 前言 💫你好,我是辰chen,本文旨在准备考研复试或就业 💫本文内容来自某机构网课,是我为复试准备的第一个项目 &#…...
华为机试真题实战应用【赛题代码篇】-最小传输时延(附python、C++和JAVA代码实现)
目录 问题描述 输入描述: 输出描述: 知识储备 解题思路 思路一...
C++ 运算符重载
(Operator) 加分 减法 []的重载 #include <iostream> using namespace std;class time1 {public:time1(){shi0;fen0;miao0;}time1(int shi, int fen, int miao){this->shi shi;this->fen fen;this->miao miao;}time1 operator (ti…...
vue3学习 【2】vite起步和开发工具基本配置
vite的简介 官方文档 刚起步学习,所以我们只需要按照官方文档的入门流程即可。推荐阅读一下官网的为什么使用vite vite目前需要的node版本是18,可以参考上一篇文章的安装nvm,用来进行多版本的node管理。 vite安装与使用 npm create vitela…...
计算机创新协会冬令营——暴力枚举题目06
我给大家第一阶段的最后一道题就到这里了,下次得过段时间了。所以这道题简单一点。但是足够经典 下述题目描述和示例均来自力扣:两数之和 题目描述 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target …...
单片机快速入门
参考连接: 安装MinGW-64(在win10上搭建C/C开发环境)https://zhuanlan.zhihu.com/p/85429160MinGW-64; 链接:https://pan.baidu.com/s/1oE1FmjyK7aJPnDC8vASmCg?pwdy1mz 提取码:y1mz --来自百度网盘超级会员V7的分享C…...
Eureka相关问题及答案(2024)
1、什么是Eureka? Eureka是一个由Netflix开发的服务发现(Service Discovery)工具,它是Spring Cloud生态系统中的一个关键组件。服务发现是微服务架构中的一个重要概念,它允许服务实例在启动时注册自己,以便…...
Django 7 实现Web便签
一、效果图 二、会用到的知识 目录结构与URL路由注册request与response对象模板基础与模板继承ORM查询后台管理 三、实现步骤 1. terminal 输入 django-admin startapp the_10回车 2. 注册, 在 tutorial子文件夹settings.py INSTALLED_APPS 中括号添加 "the…...
Jenkins集成部署java项目
文章目录 Jenkins简介安装 Jenkins简介 Jenkins能实时监控集成中存在的错误,提供详细的日志文件和提醒功能,还能用图表的形式形象的展示项目构建的趋势和稳定性。 官网 安装 在官网下载windows版本的Jenkins 但是我点击这里浏览器没有反应࿰…...
FFmpeg之——获取上传视频的尺寸(长、宽)
获取上传视频的尺寸: 获取视频尺寸通常需要借助第三方库FFmpeg。 首先,确保你的系统中已安装了FFmpeg,并且FFmpeg的可执行文件路径已经添加到你的系统环境变量中。 1.官网下载ffmpeg 进入 链接: ffmpeg官网 网址,点击下载wind…...
Ajax学习
文章目录 AjaxAjax 是什么Ajax 经典应用场景Ajax 原理示意图ajax的异步请求的方法ajax的逻辑:应用实例-验证用户名是否存在思路框架图:需求分析: 到数据库去验证用户名是否可用思路框架图大功告成:使用JQuery-Ajax实现上面相同的需求:Ajax Ajax 是什么 AJAX 即"Async…...
排序算法——关于快速排序的详解
目录 1.基本思想 2.基本原理 2.1划分思想 2.2排序过程 (1)选择基准值 (2)分割过程(Partition) (3)递归排序 (4)合并过程 2.3具体实例 2.4实现代码 2.5关键要…...
序言:《未来已来》
尊敬的读者, 你是否曾经在面对冗长的报告、繁琐的工作、沉重的生活压力时感到困扰,渴望找到一种方式来提升效率,释放压力?你是否曾经在自我创业的道路上,苦于找不到有效的市场营销方式,寻求突破?…...
【Spring实战】22 Spring Actuator 入门
文章目录 1. 定义2. 功能3. 依赖4. 配置5. 常用的应用场景1)环境监控2)运维管理3)性能优化 结论 Spring Actuator 是 Spring 框架的一个模块,为开发人员提供了一套强大的监控和管理功能。本文将深入探讨 Spring Actuator 的定义、…...
JSON安全性
确保JSON处理的安全性是现代Web开发中重要的一环。以下是一些关键的安全实践,用于防止JSON注入攻击以及确保数据在传输过程中的安全性: 1. **验证和清洗输入:** - 在将任何数据写入数据库之前,请确保验证用户输入。对于期望的JSON…...
spring-boot-maven插件repackage(goal)的那些事
前言:在打包Springboot项目成jar包时需要在pom.xml使用spring-boot-maven-plugin来增加Maven功能,在我的上一篇博客<<Maven生命周期和插件的那些事(2021版)>>中已经介绍过Maven和插件的关系,在此不再赘述&…...
ubuntu的boot分区被删除恢复
在鼓捣黑苹果的时候,误删了ubuntu的boot分区,进系统的时候出现emergency mode,那么现在来讲讲怎么恢复 首先做一个ubuntu的启动盘,然后进入启动盘的系统选择试用 呼出命令行,然后添加一个源 sudo add-apt-repository…...
【userfaultfd 条件竞争】starCTF2019 - hackme
前言 呜呜呜,这题不难,但是差不多一个多月没碰我的女朋友 kernel pwn 了,对我的 root 宝宝也是非常想念,可惜这题没有找到我的 root 宝宝,就偷了她的 flag。 哎有点生疏了,这题没看出来堆溢出,…...
深度学习中的自动化标签转换:对数据集所有标签做映射转换
在机器学习中,特别是在涉及图像识别或分类的项目中,标签数据的组织和准确性至关重要。本文探讨了一个旨在高效转换标签数据的 Python 脚本。该脚本在需要更新或更改类标签的场景中特别有用,这是正在进行的机器学习项目中的常见任务。我们将逐…...
c语言-函数指针
目录 前言一、函数指针1.1 函数指针定义1.2 函数指针调用函数1.3 函数指针代码分析 总结 前言 本篇文章介绍c语言中的函数指针以及函数指针的应用。 一、函数指针 函数指针:指向函数的指针。 函数在编译时分配地址。 &函数名 和 函数名代表的意义相同…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
