【数据分析实战】冰雪大世界携程景区评价信息情感分析采集词云
文章目录
- 引言
- 数据采集
- 数据集展示
- 数据预处理
- 数据分析
- 评价总体情况分析
- 本人浅薄分析
- 各游客人群占比分析
- 本人浅薄分析
- 各评分雷达图
- 本人浅薄分析
- 差评词云-可视化
- 本人浅薄分析
- 好评词云-可视化
- 本人浅薄分析
- 综合分析
- 写在最后
今年冬天,哈尔滨冰雪旅游"杀疯了",在元旦假期更是被南方游客"包场"。据哈尔滨市文化广电和旅游局提供大数据测算,截至元旦假日第3天,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元。游客接待量与旅游总收入达到历史峰值。
“不是北欧去不起,而是哈尔滨更有性价比。”
“零下二十摄氏度,我在哈尔滨当‘俄式公主’。”
引言
最近几天,哈尔滨冰雪大世界也屡登社交平台热搜榜。
12月18日上午,第二十五届哈尔滨冰雪大世界开园,不到3小时,预约游玩人数已达40000人。火爆之下,游客现场大喊“退票”的视频却在网络热传。据悉,冰雪大世界有几个热门项目需要线上预约后才能玩,不少游客吐槽,这些项目不仅难约,约上后排队时间也很长,以致引发不满。舆情发酵后,次日,景区发布致歉声明并推出整改措施,哈尔滨文旅局领导赴冰雪大世界现场督导。
今天,我们通过Python采集点评网站(携程)上网友对哈尔滨冰雪大世界的评价,通过数据分析一下游客对冰雪大世界的各个不满意的点和值得学习的点。
数据采集
数据采集是数据分析的前提,在数据采集阶段,我选择了在携程网站上获取用户公开评价冰雪大世界的数据。使用了Python编程语言,结合相关库如Requests和JSON,通过网页爬虫技术实现了数据的自动抓取。共采集到5528条公开评价数据。
采集难度★★
数据集展示
_id | publishTime | score | content | publishTypeTag | ipLocatedName | touristTypeDisplay | |
---|---|---|---|---|---|---|---|
0 | 180204656 | /Date(1703671819000+0800)/ | 5 | 太壮观啦,上一次是10年前来的,变化很大… | 2023-12-27 发布点评 | 上海 | 情侣夫妻 |
需要采集数据的可以联系我~
vvvvvv:176-1035-2720
数据预处理
使用了Python中一些强大的数据处理和分析工具,包括:
Pandas:用于数据清洗和整理。
Numpy:进行数学运算,如计算评分占比。
Pyecharts:生成可视化图表,直观展示分析结果。
预处理了发布日期的杂乱文字,还将一些分值拆分了出来。
_id | publishTime | score | content | publishTypeTag | ipLocatedName | touristTypeDisplay | 景色 | 趣味 | 性价比 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 180204656 | /Date(1703671819000+0800)/ | 5 | 太壮观啦,上一次是10年前来的,变化很大… | 2023-12-27 | 上海 | 情侣夫妻 | 5 | 5 | 5 |
数据分析
通过pyecharts配合pandas、numpy进行了各个指标的分析。
评价总体情况分析
统计不同评分的占比,观察整体满意度。
本人浅薄分析
-
总体评分分布:
- 大多数用户给予景区较高的评分,特别是5分和4分,分别占总评价的69.05%和13.44%。可以看出大多数的游客对景区的整体体验是持积极态度。
-
主要评分集中在高分:
- 有近90%的用户给予3分及以上的评分,说明整体来说,景区受到了较为积极的评价。
各游客人群占比分析
通过用户评价中提到的信息,分析不同人群的占比。
本人浅薄分析
-
主要人群占比:家庭亲子、朋友出游和情侣夫妻是该景区的主要游客群体,分别占比较大。可以看出冰雪大世界在家庭、朋友和情侣旅行市场有较好的吸引力。
-
其他出游和商务出差占比较低:相较于其他出游和商务出差,这两类人群在评价中的占比相对较低。可以看出该景区的特色更适合休闲度假和亲子游,而在商务和其他类型旅行方面有发展空间。
各评分雷达图
本人浅薄分析
-
总体评分较高:雷达图上各项评分都在4分以上,显示大多数游客对景区的各方面评价都较为满意。这是一个积极的信号,说明景区在整体上受到游客的好评。
-
景色和景区评分相对较高:从雷达图中可以看出,景色和景区方面的评分较高,可能是景区的自然风光和整体设计得到了游客的好评。这是景区的优势,值得进一步宣传。
差评词云-可视化
差评:分值为1、2的定义为差评
本人浅薄分析
问题关键词:预约、排队、滑梯、摩天轮、体验、小时、退票、黄牛是差评中出现频率较高的关键词。这些词反映了一些问题,如预约流程、排队体验、设备运行时间等。景区可能需要关注这些方面,以改善游客体验。
好评词云-可视化
本人浅薄分析
- 好评关键词:哈尔滨、滑梯、很漂亮、不错、灯光、冰雕、值得是好评中出现频率较高的关键词。这些词反映了游客对景区整体美观性、设施、服务的积极评价。景区可以借助这些优势进一步宣传和推广。
综合分析
-
冰雪大世界在吸引家庭亲子、朋友出游和情侣夫妻方面表现较好,可进一步加强在这些人群中的宣传和推广。
-
差评中的问题关键词提示了一些流程和体验问题,景区可能需要优化一些运营方面的细节,以提升整体用户满意度。
-
好评中的关键词反映了景区的美丽和特色,景区可以通过这些优势进行更有针对性的宣传。
-
总体评分较高,但仍有一些方面可以改进,比如提升性价比。景区可通过进一步了解游客需求,优化服务和提升设施,以提高整体满意度和吸引更多游客。
写在最后
通过对冰雪大世界5528条携程用户公开评价的深入分析,我们深入了解了游客的评价情况,以及景区在不同方面的优势和改进空间。
该分析仅供学习交流使用,禁止用于商业用途,不构成任何投资建议。
大数据分析为运营和各行业带来了前所未有的机会,使企业能够更敏锐地洞察市场、优化运营,并更有效地应对竞争和变革。在信息时代,充分利用大数据分析,将成为企业取得竞争优势的不可忽视的关键要素。
本人数据分析领域的从业者,拥有专业背景和能力,可以为您的数据挖掘和分析需求提供支持。期待着能够与您共同探索更多有意义的数据洞见,为您的项目和业务提供数据分析方面的帮助。
创作不易,如果你觉得有帮助,请点个赞支持一下。你的鼓励是我创作的最大动力,期待未来能为大家带来更多有趣的分析文章。感谢大家的阅读和支持!
相关文章:

【数据分析实战】冰雪大世界携程景区评价信息情感分析采集词云
文章目录 引言数据采集数据集展示数据预处理 数据分析评价总体情况分析本人浅薄分析 各游客人群占比分析本人浅薄分析 各评分雷达图本人浅薄分析 差评词云-可视化本人浅薄分析 好评词云-可视化本人浅薄分析 综合分析写在最后 今年冬天,哈尔滨冰雪旅游"杀疯了&q…...

BIND-DNS配置介绍
一、主要配置文件 /etc/named.conf options { //Option 段全部配置 listen-on port 53 { 127.0.0.1; };//表示BIND将在53端口监听,若需要对所有IP进行监听,则修改为// listen-on port 53 { any; }; directory "/var/named"…...
Python技巧
Python,现如今非常热门的一种编程语言,在人工智能中大放异彩。做任何事都需要技巧,这可以大大提高效率,学习Python,同样如此! 第一个就是assret语句,让我们看下面一个关于折扣的例子: def dic…...

几种常见的CSS三栏布局?介绍下粘性布局(sticky)?自适应布局?左边宽度固定,右边自适应?两种以上方式实现已知或者未知宽度的垂直水平居中?
几种常见的CSS三栏布局 流体布局 效果: 参考代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1…...

箭头函数 - JavaScript的新宠儿
📢 鸿蒙专栏:想学鸿蒙的,冲 📢 C语言专栏:想学C语言的,冲 📢 VUE专栏:想学VUE的,冲这里 📢 CSS专栏:想学CSS的,冲这里 Ǵ…...

操作系统期末复习知识点
目录 一.概论 1.操作系统的介绍 2.特性 3.主要功能 4.作用 二.进程的描述与控制 1.进程的定义 2.特性 3.进程的创建步骤 4.基本状态转化 5.PCB的作用 6.进程与线程的比较 三.进程同步 1.同步的概念(挺重要的) 2.临界区 3.管程和进程的区…...
[英语学习][23][Word Power Made Easy]的精读与翻译优化
[序言] 译者的这次翻译, 完全直译, 生硬无比. [英文学习的目标] 提升自身的英语水平, 对日后编程技能的提升有很大帮助. 希望大家这次能学到东西, 同时加入我的社区讨论与交流英语相关的内容. [原著英文与翻译版对照][第22页] Knowledge is chiefly in the form of words…...

吉林大学19、21级计算机学院《计算机网络》期末真题试题
一、21级(考后回忆) 一、不定项选择(一共10个选择题,一个两分,选全得满分) 不定项:可以选择1~4个 考点有: ①协议、服务 ②码分多路复用通过接受码片序列,求哪个站点发送…...

python练习3【题解///考点列出///错题改正】
一、单选题 1.【单选题】 ——可迭代对象 下列哪个选项是可迭代对象( D)? A.(1,2,3,4,5) B.[2,3,4,5,6] C.{a:3,b:5} D.以上全部 知识点补充——【可迭代对象】 可迭代对象(iterable)是指可以通过迭代ÿ…...

LINUX服务器防火墙nf_conntrack问题一例
一、故障现象 业务反馈服务异常,无法响应请求,从系统日志 dmesg 或 /var/log/messages 看到大量以下记录:kernel: nf_conntrack: table full, dropping packet. 二、问题分析 业务高峰期服务器访问量大,内核 netfilter 模块 conntrack 相关参…...

经典八股文之RocketMQ
核心概念 NameServer nameserver是整个rocketmq的大脑,是rocketmq的注册中心。broker在启动时向所有nameserver注册。生产者在发送消息之前先从 NameServer 获取 Broker 服务器地址列表(消费者一 样),然后根据负载均衡算法从列表中选择一台服务器进行消…...
Pandas之从sql库中导入数据的几种方法分析
1.使用mysql-connector-python库将SQL文件导入到Python中,并查询数据库中的表 确保已经安装mysql-connector-python库 #导入模块 import mysql.connector# 建立与MySQL数据库的连接 conn mysql.connector.connect(host"localhost",user"username&…...
18. Mysql 存储过程,实现动态数据透视
文章目录 概述常见操作创建存储过程存储过程局部变量定义和赋值查看存储过程删除存储过程调用存储过程 示例-动态数据透视详细讲解总结参考资料 概述 Mysql 存储过程是一组预先编译的 sql 语句集合,它们被存储在数据库中,并可以被多次调用执行。存储过程…...

VuePress部署到GitHub Pages
一、git push自动部署 1、创建用于工作流的文件 在项目根目录下创建一个用于 GitHub Actions 的工作流 .yml 文件 name: docson:# 每当 push 到 main 分支时触发部署push:branches: [main]# 手动触发部署workflow_dispatch:jobs:docs:runs-on: ubuntu-lateststeps:- uses: a…...

git 本地仓库
本地仓库 start.bat 启动...

Hive实战:分科汇总求月考平均分
文章目录 一、实战概述二、提出任务三、完成任务(一)准备数据1、在虚拟机上创建文本文件2、上传文件到HDFS指定目录 (二)实现步骤1、启动Hive Metastore服务2、启动Hive客户端3、创建分区的学生成绩表4、按分区加载数据5、查看分区…...

快速搭建知识付费小程序,3分钟即可开启知识变现之旅
明理信息科技知识付费saas租户平台 在当今数字化时代,知识付费已经成为一种趋势,越来越多的人愿意为有价值的知识付费。然而,公共知识付费平台虽然内容丰富,但难以满足个人或企业个性化的需求和品牌打造。同时,开发和…...

【计算机图形学划重点】第一讲-Pipeline and Introduction
基础知识 Vertex(顶点) define the location of primitives in space, and consists of vertex stream. 顶点用于定义空间中基本图形(primitives)的位置。它包含了一个顶点流(vertex stream),…...

面试题-DAG 有向无环图
有向无环图用于解决前后依赖问题,在Apollo中用于各个组件的依赖管理。 在算法面试中,有很多相关题目 比如排课问题,有先修课比如启动问题,需要先启动1,才能启动2 概念 顶点: 图中的一个点,比…...

vite + vue3引入ant design vue 报错
npm install ant-design-vue --save下载插件并在main.ts 全局引入 报错 解决办法一: main.ts注释掉全局引入 模块按需引入 解决办法二 将package.json中的ant-design-vue的版本^4.0.0-rc.4改为 ^3.2.15版本 同时将将package-lock.json中的ant-design-vue的版本…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...