当前位置: 首页 > news >正文

大语言模型(LLM)框架及微调 (Fine Tuning)

        大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。

        LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。

        LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。

         LLM 技术应用类型分别为 大模型、AI编程、工具和平台、基础设施、算力等。

一、LLM技术背景

        Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。

        GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种信息,支持更广泛的应用领域。

 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg

二、LLM底座基础设施

2.1、向量数据库及向量支持

        向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类:

        向量数据库:原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 Chroma、LanceDB、Margo、Milvus、Pinecone等均属于原生向量数据库。

        传统数据库支持向量:除了选择专业的向量数据库,对传统数据库添加“向量支持”也是主流方案。比如Redis、PostgreSQL、ClickHome、Elasticsearch等传统数据库均已支持向量检索。

向量数据库市场及融资情况

        ChatGPT 问世以来,大模型星火初始,向量数据 库不但获得了技术领域的关注,也逐渐吸引了市场和资本的注 意力。近两年来,向量数据库公司迎来了一波融资潮:

2.2、LLM大模型框架及微调

        大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。

        微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 其更好地适应特定的任务或应用场景。这一步骤使得通 用的大型模型能够在特定任务上表现出更高的精度和更 好的效果。

        大模型框架提供了 LLM 的基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节。两者相结合, 使得 LLM 在广泛的应用场景中都能发挥出色的性能。

 2.2、LLM大模型框架特点

        抽象和简化:大模型开发框架通过提供高 层次的 API 简化了复杂模型的构建过程。这 些 API 抽象掉了许多底层细节,使开发者能 够专注于模型的设计和训练策略

        性能优化:这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。

        大型数据集:它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。

        生态扩展:为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。

        国产深度学习框架 OneFlow 架构 (图源:https://www.oneflow.org/a/chanpin/oneflow/)

2.3、微调模型步骤

1.选择预训练模型:选取一个已经在大量数据上进 行过预训练的模型作为起点;

2.准备任务特定数据:收集与目标任务直接相关的 数据集,这些数据将用于微调模型;

3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务;

4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力;

5.部署:将性能经验证的模型部署到实际应用中去。

 微调的过程也是分类模型训练的过程

(图源:https://medium.com/mlearning-ai/what-is-a-fine-tuned-llm-67bf0b5df081)

 原文:《LLM技术报告》

相关文章:

大语言模型(LLM)框架及微调 (Fine Tuning)

大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,…...

速盾高防ip:专业防御ddos

速盾高防IP是速盾网络为企业提供的专业DDoS攻击防御解决方案之一。作为一种先进的网络安全服务,速盾高防IP致力于保护客户的网络资源免受分布式拒绝服务(DDoS)攻击的威胁。以下是速盾高防IP的一些关键特点和优势: 实时攻击监测&am…...

第5章-第8节-Java面向对象中的内部类

1、内部类:属于类的成员之一,类的内部又定义类,外层的class称为外部类,内部的class称为内部类。 设计了某个类,根据需求发现其内部又需要定义一个独立的内部结构,此时就考虑将其定义为内部类,内…...

首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法

Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-Megat…...

从零学Java - 接口

Java 接口 文章目录 Java 接口1.接口的语法1.1 与抽象类的区别 2.如何使用接口?2.1 接口的使用规范 3.什么是接口?3.1 常见关系 4.接口的多态性5.面向接口编程5.1 接口回调 6.特殊接口6.1 常量接口6.2 标记接口 7.接口的好处 补充面向对象 七大设计原则 1.接口的语法 接口&a…...

安全防御之身份鉴别技术

身份认证技术用于在计算机网络中确认操作者的身份。在计算机网络世界中,用户的身份信息是用一组特定的数据来表示的,计算机也只能识别用户的数字身份。身份认证技术能够作为系统安全的第一道防线,主要用于确认网络用户的身份,防止…...

axios post YII2无法接收post参数问题解决

axios post YII2无法接收post参数问题解决 在yii 配置文件中增加 ‘parsers’ > [“application/json” > “yii\web\JsonParser”] 如下所示: $config [id > basic,language > zh-CN,timeZone > env(TIME_ZONE, PRC),basePath > $basePath,bo…...

性能优化-OpenMP基础教程(三)

本文主要介绍OpenMP并行编程的环境变量和实战、主要对比理解嵌套并行的效果。 🎬个人简介:一个全栈工程师的升级之路! 📋个人专栏:高性能(HPC)开发基础教程 🎀CSDN主页 发狂的小花 &…...

[足式机器人]Part2 Dr. CAN学习笔记-动态系统建模与分析 Ch02-1+2课程介绍+电路系统建模、基尔霍夫定律

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-动态系统建模与分析 Ch02-12课程介绍电路系统建模、基尔霍夫定律 1. 课程介绍2. 电路系统建模、基尔霍夫定律 1. 课程介绍 2. 电路系统建模、基尔霍夫定律 基本元件: 电量 库伦&…...

VSCode配置C/C++环境

文章目录 1. 安装配置 C 编译器1.1 下载 MinGW1.2 Mingw添加到系统变量1.3 验证 2. 安装和配置VSCode2.1 安装VSCode2.2 VSCode配置C环境2.3. 优化 3.参考文章 本文主要记录在VSCode中配置C环境,非常感谢参考文章中的博主。 1. 安装配置 C 编译器 首先需要安装 C 编…...

ChatGPT绘制全球植被类型分布图、生物量图、土壤概念图、处理遥感数据并绘图、病毒、植物、动物细胞结构图

以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…...

vmware workstation的三种网络模式通俗理解

一、前言 workstations想必很多童鞋都在用,经常会用来在本机创建不同的虚拟机来做各种测试,那么对于它支持的网络模式,在不同的测试场景下应该用哪种网络模式,你需要做下了解,以便可以愉快的继续测(搬&…...

C++程序设计兼谈对象模型(侯捷)笔记

C程序设计兼谈对象模型(侯捷) 这是C面向对象程序设计的续集笔记,仅供个人学习使用。如有侵权,请联系删除。 主要内容:涉及到模板中的类模板、函数模板、成员模板以及模板模板参数,后面包含对象模型中虚函数调用&…...

selenium实现UI自动化

1.selenium简介 selenium是支持web浏览器自动化的一系列工具和库的综合项目。具有支持linux、windows等多个平台,支持Firefox、chrome等多种主流浏览器;支持Java、Python等多种语言。 主要包括的三大工具有: WebDriver(rc 1.0)、…...

【DevOps-03】Build阶段-Maven安装配置

一、简要说明 下载安装JDK8下载安装Maven二、复制准备一台虚拟机 1、VM虚拟复制克隆一台机器 2、启动刚克隆的虚拟机,修改IP地址 刚刚克隆的虚拟机 ,IP地址和原虚拟的IP地址是一样的,需要修改克隆后的虚拟机IP地址,以免IP地址冲突。 # 编辑修改IP地址 $ vi /etc/sysconfig…...

​已解决java.lang.ArrayIndexOutOfBoundsException异常的正确解决方法,亲测有效!!!​

已解决java.lang.ArrayIndexOutOfBoundsException异常的正确解决方法,亲测有效!!! 目录 报错问题 解决思路 解决方法 总结 Q1 - 报错问题 java.long.ArrayIndexOutOfBoundsException 是Java中的一个运行时异常​&#xff0c…...

Pycharm打包程序为exe文件

Pycharm打包程序为exe文件 【一】导入模块pyinstaller 【1】图片说明 【2】文字说明 根据图片顺序执行 首先点击file进入settings界面,在setting界面找到Project下面的Python Interpretor,点击号进行模块的添加在搜索框中输入pyinstaller,…...

地理空间分析3——数据可视化与地理空间

写在开头 数据可视化是将数据以图形形式呈现,使其更易于理解和分析的过程。在地理空间分析中,数据可视化不仅能够展示地理位置信息,还能够有效地传达地理空间数据的模式、趋势和关联。本文将探讨数据可视化在地理空间分析中的作用,介绍Python中常用的数据可视化工具,并深…...

python开发案例教程-清华大学出版社(张基温)答案(4.3)

练习 4.1 1. 判断题 判断下列描述的对错。 (1)子类是父类的子集。 ( ✖ ) (2)父类中非私密的方法能够被子类覆盖。 ( ✔ ) (3)子类…...

Qt 5.9.4 转 Qt 6.6.1 遇到的问题总结(一)

最近公司对大家的开发的硬件环境进行了升级,电脑主机的配置、显示器(两台大屏显示器)变得的逼格高多了。既然电脑上的开发环境都需要重装,就打算把开发环境也升级到最新版本,要用就用最新版本。下面对升级后的开发环境…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...