thinkphp6入门(14)-- 多关联模型查询
背景:
有3个数据表,一个User表,一个Cloth表,一个Shoe表。
Cloth表和Shoe表分别和User表通过user_id关联。
thinkphp 6中如何通过模型查询所有用户,其中包括每个用户的cloth和shoe。
多关联模型查询:
1. User模型 (app\model\User.php):
namespace app\model;use think\Model;class User extends Model
{// 设置表名(如果与默认的表名不同)protected $table = 'user';// 关联到Cloth模型public function cloths()
{return $this->hasMany('App\model\Cloth', 'user_id');}// 关联到Shoe模型public function shoes()
{return $this->hasMany('App\model\Shoe', 'user_id');}
}
2. Cloth模型 (app\model\Cloth.php):
namespace app\model;use think\Model;class Cloth extends Model
{// 设置表名(如果与默认的表名不同)protected $table = 'cloth';// 关联到User模型public function user()
{return $this->belongsTo('App\model\User', 'user_id');}
}
3. Shoe模型 (app\model\Shoe.php):
与Cloth模型类似,确保Shoe模型也有与User的关联关系。
4. 查询所有用户及其关联的Cloth和Shoe:
在控制器或其他地方,可以这样查询:
use app\model\User;// 查询所有用户及其关联的Cloth和Shoe数据
$users = User::with(['cloths', 'shoes'])->select();// 输出结果(例如,使用dump函数)
dump($users);
这段代码首先使用with()方法指定要加载的关联数据(即cloths和shoes),然后使用select()方法执行查询。查询结果将是一个包含所有用户及其关联的Cloth和Shoe数据的数组。每个用户对象都会包含与其关联的Cloth和Shoe数据。
5. 增加查询条件
use app\model\User;// 查询所有用户及其关联的Cloth和Shoe数据
$users = User::with(['cloths', 'shoes'=> function (Query $query) {$query->where('is_delete', 0);}])->where('is_member', 1)->select();// 输出结果(例如,使用dump函数)
dump($users);
关于如何解决不同模型间字段名重复的问题,参考:
https://www.kancloud.cn/manual/thinkphp6_0/1037600
效果类似

by 软件工程小施同学
相关文章:
thinkphp6入门(14)-- 多关联模型查询
背景: 有3个数据表,一个User表,一个Cloth表,一个Shoe表。 Cloth表和Shoe表分别和User表通过user_id关联。 thinkphp 6中如何通过模型查询所有用户,其中包括每个用户的cloth和shoe。 多关联模型查询: 1.…...
MT8766安卓核心板规格参数_MTK8766核心板模块方案定制
MT8766安卓核心板:高性能、稳定可靠、集成度高的一体化解决方案 MT8766安卓核心板采用联发科MTK8766四核4G模块方案,是一款高度集成的安卓一体板。四核芯片架构,主频可达到2.0GHz,支持国内4G全网通。12nm制程工艺,支持…...
k8s的声明式资源管理(yaml文件)
1、声明式管理的特点 (1)适合对资源的修改操作 (2)声明式管理依赖于yaml文件,所有的内容都在yaml文件当中 (3)编辑好的yaml文件,还是要依靠陈述式的命令发布到k8s集群当中 kubect…...
Qt中图片旋转缩放操作
在我们开发过程中,难免会遇到加载图片的问题,在上一个开发项目里我就遇到了图片缩放的问题,所以,我决定将这一部分好好研究,记录下来,希望对大家有帮助哟~ 在讲解之前,我们先看一看具体的展示效…...
LeetCode 2125. 银行中的激光束数量【数组,遍历】1280
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
关于图像分割任务中按照比例将数据集随机划分成训练集和测试集
1. 前言 之前写了分类和检测任务划分数据集的脚本,三大任务实现了俩,基于强迫症,也实现一下图像分割的划分脚本 分类划分数据:关于图像分类任务中划分数据集,并且生成分类类别的josn字典文件 检测划分数据ÿ…...
回文链表【链表】
Problem: 234. 回文链表 文章目录 思路 & 解题方法复杂度Code 思路 & 解题方法 先转成列表。 复杂度 时间复杂度: 添加时间复杂度, 示例: O ( n ) O(n) O(n) 空间复杂度: 添加空间复杂度, 示例: O ( n ) O(n) O(n) Code # Definition for si…...
Linux Perf 介绍
文章目录 前言 二、安装Perf三、二级命令3.1 perf list3.2 perf record/report3.3 perf stat3.4 perf top 四、使用火焰图进行性能分析4.1 下载火焰图可视化生成器4.2 使用perf采集数据4.3 生成火焰图参考资料 前言 perf是一款Linux性能分析工具,内置在Linux内核的…...
【论文阅读】Variational Graph Auto-Encoder
0、基本信息 会议:2016-NIPS作者:Thomas N. Kipf,Max Welling文章链接:Variational Graph Auto-Encoder代码链接:Variational Graph Auto-Encoder 1、介绍 本文提出一个变分图自编码器,一个基于变分自编…...
如何把电脑中的项目快速传进Github中?
一、打开GitHub网站:https:github.com 登录自己的个人账号 1.新建一个项目 2.用鼠标直接拖拽电脑中的项目文件夹与文件到新创建的项目中点击保存即可。...
Plantuml之nwdiag网络图语法介绍(二十九)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...
MyBatis接口的方法上使用,定义对应的 SQL 操作
目录标题 一、Mapper:二、Select、Insert、Update、Delete:三、Results、Result:四、Param:五、# 和 $: MyBatis 是一款基于 Java 的持久层框架,它通过简化数据库操作来帮助开发者构建更好的数据库访问应用…...
(20)Linux初始文件描述符
前言:本章我们介绍 O_WRONLY, O_TRUNC, O_APPEND 和 O_RDONLY。之后我们开始讲解文件描述符。 一、系统传递标记位 1、O_WRONLY C 语言在 w 模式打开文件时,文件内容是会被清空的,但是 O_WRONLY 好像并非如此? 代码演示&…...
draw.io基础操作和代码高效画图进阶
文章目录 一、基础操作1、链接2、等比例变形3、复制4、插入表格 二、在线打开三、插入—功能聚集地1、插入图片2、插入画笔3、插入布局4、导出 四、图码转换——高效画图1、通用图码转换2、流程图生成:使用mermaid语言生成图: 五、图码转换高效画图的典型…...
2024-01-04 用llama.cpp部署本地llama2-7b大模型
点击 <C 语言编程核心突破> 快速C语言入门 用llama.cpp部署本地llama2-7b大模型 前言一、下载llama.cpp以及llama2-7B模型文件二、具体调用总结 前言 要解决问题: 使用一个准工业级大模型, 进行部署, 测试, 了解基本使用方法. 想到的思路: llama.cpp, 不必依赖显卡硬件…...
HTTP打怪升级之路
新手村 上个世纪80年代末,有一天,Tim Berners-Lee正在工作,他需要与另一台计算机上的同事共享一个文件。他尝试使用电子邮件,但发现电子邮件不能发送二进制文件。Tim Berners-Lee意识到,他需要一种新的协议来共享二进制…...
axure RP9.0安装字体图标库fontawesome
字体图库地址: Font AwesomeThe internets icon library toolkit. Used by millions of designers, devs, & content creators. Open-source. Always free. Always awesome.https://fontawesome.com/v6/download进入后下载想要的版本如我是6.3 下载后得到压缩包,解压之后…...
PiflowX组件-ReadFromUpsertKafka
ReadFromUpsertKafka组件 组件说明 upsert方式从Kafka topic中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HO…...
keil 5 ARM CC编译错误和警告解释大全(3)序列号2000-3000
2001年:已声明虚拟参数,但从未使用过 2002年:虚拟参数重新定义为do变量 2003:无法优化:常量/表达式传递给可能修改的变量 2004:重新维度的数组作为参数传递 2005:重维度数组等价 2006&…...
CentOS 7 实战指南:文件或目录的权限操作命令详解
前言 这篇文章详细介绍了文件和目录的常用权限操作命令,并提供了全面的技术解析。通过本文,你将学习如何使用 chmod 和 chown 命令来管理文件和目录的权限,控制用户和用户组的访问权限。无论你是初学者还是有经验的系统管理员,这…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
