当前位置: 首页 > news >正文

Unity中Shader的_Time精度问题

文章目录

  • 前言
  • 一、U方向上优化
  • 二、V方向上优化
    • 在这里插入图片描述
  • 三、最终代码
    • 1、效果
    • 2、Shader


前言

在Unity的Shader中,使用了_Time来达到UV的流动效果,普遍会出现一个问题。我们的UV值会随着时间一直增加(uv值增加了,但是因为超过1就会重复,不影响效果),在一些较老的移动端上,存储不下那么大的值,就会导致精度丢失。

  • 精度丢失前
    请添加图片描述
  • 精度丢失后(有特别明显的像素点质感)
    请添加图片描述
    我们对上一篇文章中,使用到的序列帧动画Shader,进行_Time相加后的精度优化。
  • Unity中Shader序列帧动画(U、V方向的走格)

一、U方向上优化

  • 对之前的公式取小数部分
  • u ( t ) = g ( C o l u m n ⋅ t ) C o l u m n = ⌊ C o l u m n ⋅ t ⌋ C o l u m n u(t) = \frac{g(Column·t)}{Column} = \frac{\lfloor Column·t \rfloor}{Column} u(t)=Columng(Columnt)=ColumnColumnt
  • u 2 ( t ) = f r a c ( u ( t ) ) = f r a c ( ⌊ C o l u m n ⋅ t ⌋ C o l u m n ) u_2(t) = frac(u(t)) =frac(\frac{\lfloor Column·t \rfloor}{Column}) u2(t)=frac(u(t))=frac(ColumnColumnt)
    在这里插入图片描述

o.uv.x += frac(floor(_Time.y *_Sequence.y * _Sequence.z)/_Sequence.y);


二、V方向上优化

  • 对之前的公式取小数部分
  • v ( t ) = u ( t C o l u m n ) = ⌊ C o l u m n ⋅ t C o l u m n ⌋ C o l u m n v(t) = u(\frac{t}{Column}) = \frac{\lfloor \frac{Column·t}{Column} \rfloor}{Column} v(t)=u(Columnt)=ColumnColumnColumnt
  • v 2 ( t ) = f r a c ( v ( t ) ) = f r a c ( ⌊ C o l u m n ⋅ t C o l u m n ⌋ C o l u m n ) v_2(t) = frac(v(t)) = frac(\frac{\lfloor \frac{Column·t}{Column} \rfloor}{Column}) v2(t)=frac(v(t))=frac(ColumnColumnColumnt)

在这里插入图片描述

三、最终代码

1、效果

请添加图片描述

2、Shader

Shader "MyShader/URP/P3_9"
{Properties{_Color("Color",Color) = (1,1,1,1)_MainTex("MainTex",2D) = "white"{}_Sequence("Row(X) Column(Y) Speed(Z)",Vector) = (1,1,1,1)}SubShader{Tags{//告诉引擎,该Shader只用于 URP 渲染管线"RenderPipeline"="UniversalPipeline"//渲染类型"RenderType"="Transparent"//渲染队列"Queue"="Transparent"}Blend SrcAlpha OneMinusSrcAlpha Zwrite OnPass{HLSLPROGRAM#pragma vertex vert#pragma fragment frag#pragma multi_compile_fog#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"struct Attribute{float3 vertexOS : POSITION;float2 uv : TEXCOORD0;};struct Varying{float4 vertexCS : SV_POSITION;float2 uv : TEXCOORD1;float fogCoord : TEXCOORD2;};CBUFFER_START(UnityPerMaterial)float4 _Color;float4 _MainTex_ST;half4 _Sequence;CBUFFER_ENDTEXTURE2D(_MainTex);SAMPLER(sampler_MainTex);Varying vert(Attribute v){Varying o;o.vertexCS = TransformObjectToHClip(v.vertexOS);o.uv = float2(v.uv.x/_Sequence.y,v.uv.y/_Sequence.x + (_Sequence.x - 1)/_Sequence.x);o.uv.x += frac(floor(_Time.y *_Sequence.y * _Sequence.z)/_Sequence.y);o.uv.y -= frac(floor(_Time.y *_Sequence.y * _Sequence.z / _Sequence.y)/_Sequence.x);//o.uv.x += floor(_Time.y);//o.uv = float2(v.uv.x/4,v.uv.y/4);//o.uv = TRANSFORM_TEX(v.uv,_MainTex);o.fogCoord = ComputeFogFactor(o.vertexCS.z);return o;}half4 frag(Varying i) : SV_Target{float4 mainTex = SAMPLE_TEXTURE2D(_MainTex,sampler_MainTex,i.uv);float4 col = mainTex * _Color;col.rgb = MixFog(col,i.fogCoord);return col;}ENDHLSL}}}

相关文章:

Unity中Shader的_Time精度问题

文章目录 前言一、U方向上优化二、V方向上优化在这里插入图片描述 三、最终代码1、效果2、Shader 前言 在Unity的Shader中,使用了_Time来达到UV的流动效果,普遍会出现一个问题。我们的UV值会随着时间一直增加(uv值增加了,但是因为…...

听GPT 讲Rust源代码--compiler(15)

File: rust/compiler/rustc_arena/src/lib.rs 在Rust源代码中&#xff0c;rustc_arena/src/lib.rs文件定义了TypedArena&#xff0c;ArenaChunk&#xff0c;DroplessArena和Arena结构体&#xff0c;以及一些与内存分配和容器操作相关的函数。 cold_path<F: FnOnce,drop,new,…...

关键字联合体union的定义和使用

联合体的定义 联合体的定义和结构体相同。 联合体成员共用存储空间&#xff0c;联合体占用的空间最大长度的数据成员的长度。 union State {char sleep;char run;int suspend;double error; }state_u;以上例子&#xff0c;State表示联合体的名字&#xff0c;它相当于声明了一…...

基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 遗传算法&#xff08;GA&#xff09;基本原理 4.2 粒子群优化&#xff08;PSO&#xff09;基本原理 4.3 算法优化策略 5.完整程序 1.程序功能描述 VRPTW是车辆路径问题&#xff08;VR…...

【leetcode100-033】【链表】排序链表

【题干】 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 【思路】 递归版归并法链表版&#xff5e;没什么特别好说的&#xff08;非递归版归并也是可以哒&#xff0c;但是马上要考试了今天懒得写了&#xff01;打个flag在这里也许哪天想起来…...

[Kubernetes]5. k8s集群StatefulSet详解,以及数据持久化(SC PV PVC)

前面通过deployment结合service来部署无状态的应用,下面来讲解通过satefulSet结合service来部署有状态的应用 一.StatefulSet详解 1.有状态和无状态区别 无状态: 无状态(stateless)、牲畜(cattle)、无名(nameless)、可丢弃(disposable) 有状态: 有状态(stateful)、宠物(pet)…...

数据库系统-甘晴void学习笔记

数据库系统笔记 计科210X 甘晴void 202108010XXX 教材&#xff1a;《数据库系统概论》第6版 &#xff08;图片来源于网络&#xff0c;侵删&#xff09; 文章目录 数据库系统<br>笔记第一篇 基础篇1 绪论1.1数据库系统概述1.2数据模型1.3数据库系统的结构(三级模式结构…...

Azure Machine Learning - 人脸识别任务概述与技术实战

Azure AI 人脸服务提供了可检测、识别和分析图像中的人脸的 AI 算法。 人脸识别软件在许多不同情形中都十分重要&#xff0c;例如识别、无接触访问控制和实现隐私的人脸模糊。你可以通过客户端库 SDK&#xff0c;或者直接调用 REST API 使用人脸服务。 目录 一、人脸识别服务场…...

强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)

文章目录 概览&#xff1a;RL方法分类蒙特卡洛方法&#xff08;Monte Carlo&#xff0c;MC&#xff09;MC BasicMC Exploring Starts&#x1f7e6;MC ε-Greedy 本系列文章介绍强化学习基础知识与经典算法原理&#xff0c;大部分内容来自西湖大学赵世钰老师的强化学习的数学原理…...

DDIA 第十一章:流处理

本文是《数据密集型应用系统设计》&#xff08;DDIA&#xff09;的读书笔记&#xff0c;一共十二章&#xff0c;我已经全部阅读并且整理完毕。 采用一问一答的形式&#xff0c;并且用列表形式整理了原文。 笔记的内容大概是原文的 1/5 ~ 1/3&#xff0c;所以你如果没有很多时间…...

webpack知识点总结(高级应用篇)

除开公共基础配置之外&#xff0c;我们意识到两点: 1. 开发环境(modedevelopment),追求强大的开发功能和效率&#xff0c;配置各种方便开 发的功能;2. 生产环境(modeproduction),追求更小更轻量的bundle(即打包产物); 而所谓高级应用&#xff0c;实际上就是进行 Webpack 优化…...

均匀与准均匀 B样条算法

B 样条曲线的定义 p ( t ) ∑ i 0 n P i F i , k ( t ) p(t) \sum_{i0}{n} P_i F_{i, k}(t) p(t)i0∑​nPi​Fi,k​(t) 方程中 n 1 n1 n1 个控制点&#xff0c; P i P_i Pi​, i 0 , 1 , ⋯ n i0, 1, \cdots n i0,1,⋯n 要用到 n 1 n1 n1 个 k k k 次 B 样条基函数 …...

2023年12 月电子学会Python等级考试试卷(一级)答案解析

青少年软件编程(Python)等级考试试卷(一级) 分数:100 题数:37 一、单选题(共25题,共50分) 1. 下列程序运行的结果是?( ) print(hello) print(world) A. helloworld...

启发式算法解决TSP、0/1背包和电路板问题

1. Las Vegas 题目 设计一个 Las Vegas 随机算法&#xff0c;求解电路板布线问题。将该算法与分支限界算法结合&#xff0c;观察求解效率。 代码 python代码如下&#xff1a; # -*- coding: utf-8 -*- """ Date : 2024/1/4 Time : 16:21 Author : …...

阿里云新用户的定义与权益

随着云计算的普及&#xff0c;阿里云作为国内领先的云计算服务提供商&#xff0c;吸引了越来越多的用户。对于新用户来说&#xff0c;了解阿里云新用户的定义和相关权益非常重要&#xff0c;因为它关系到用户能否享受到更多的优惠和服务。 一、阿里云新用户的定义 阿里云新用户…...

go语言多线程操作

目录 引言 一、如何实现多线程 1. 线程的创建与管理: 2. 共享资源与同步: 3. 线程间通信: 4. 线程的生命周期管理: 5. 线程安全: 6. 考虑并发问题: 7. 性能与资源利用: 8. 特定语言或框架的工具和库: 二、go语言多线程 Goroutine 1. 轻量级: 2. 动态栈: 3. 调度:…...

GreatSQL社区2023全年技术文章总结

GreatSQL社区自成立以来一直致力于为广大的数据库爱好者提供一个交流与学习的平台。在2023年&#xff0c;我们见证了社区的蓬勃发展&#xff0c;见证了众多技术文章的诞生与分享。 此篇总结呈现GreatSQL社区2023年社区技术文章在CSDN发布的全部。这些文章涵盖了GreatSQL、MGR、…...

【论文阅读笔记】Stable View Synthesis 和 Enhanced Stable View Synthesis

目录 Stable View Synthesis摘要引言 Enhanced Stable View Synthesis 从Mip-NeRF360的对比实验中找到的两篇文献&#xff0c;使用了卷积神经网络进行渲染和新视角合成&#xff0c;特此记录一下 ToDo Stable View Synthesis paper&#xff1a;https://readpaper.com/pdf-ann…...

网络报文分析程序的设计与实现(2024)

1.题目描述 在上一题的基础上&#xff0c;参照教材中各层报文的头部结构&#xff0c;结合使用 wireshark 软件&#xff08;下载地址 https://www.wireshark.org/download.html#releases&#xff09;观察网络各层报文捕获&#xff0c;解析和分析的过程&#xff08;如下 图所示&a…...

贯穿设计模式-享元模式思考

写享元模式的时候&#xff0c;会想使用ConcurrentHashMap来保证并发&#xff0c;没有使用双重锁会不会有问题&#xff1f;但是在synchronize代码块里面需要尽量避免throw异常&#xff0c;希望有经验的同学能够给出解答&#xff1f; 1月6号补充&#xff1a;没有使用双重锁会有问…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...