MYSQL分表容量预估:简明指南
随着数据量的日益增长,分表技术成为优化mysql数据库性能的重要策略。本文介绍一种简明有效的预估分表容量大小的方法,帮助开发者和数据库管理员进行有效的资源规划。
背景
在处理大规模数据时,为了优化性能和管理便利,常常采用分表技术。分表可以帮助减少单个表的大小,优化查询效率,提高数据管理的灵活性。但同时带来了一个挑战:如何准确预估分表后的容量需求。
方案概述
数据行大小评估: 考虑到各字段类型及长度,我们可以计算出单行数据的大致大小。
数据增长预测:基于历史数据增长趋势,我们可以预估未来的数据量。
索引和冗余数据:考虑到索引和可能的冗余数据对总容量的影响。
实例分析:电商平台用户表容量预估
让我们以一个具体的例子来说明这种容量预估方法的应用。假设我们有一个电商平台的用户表 user_profiles,该表包含以下字段:用户ID (id), 用户名 (username), 个人头像链接 (profile_pic), 性别 (gender), 出生日期 (date_of_birth), 账户创建时间 (created_at), 最后更新时间 (updated_at)
CREATE TABLE user_profiles
(id INT NOT NULL AUTO_INCREMENT COMMENT '主键ID',username VARCHAR(40) DEFAULT NULL COMMENT '用户名',profile_pic VARCHAR(200) DEFAULT NULL COMMENT '个人头像链接',gender SMALLINT DEFAULT NULL COMMENT '性别标识,0表示男性,1表示女性',date_of_birth DATE DEFAULT NULL COMMENT '出生日期',created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT '账户创建时间',updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '最后更新时间',PRIMARY KEY (id)
) ENGINE = InnoDB;
要准确计算单行记录的大小,我们需要考虑字段类型和长度、索引、分表策略以及大量用户数据对数据库大小的影响。首先,我们计算基本单行记录的大小:
下面是一个 MySQL 数据类型及其大致占用字节数的表格:
数据类型 | 字节(大小) | 说明 |
---|---|---|
TINYINT | 1 | |
SMALLINT | 2 | |
MEDIUMINT | 3 | |
INT, INTEGER | 4 | |
BIGINT | 8 | |
FLOAT | 4 | 单精度浮点数 |
DOUBLE | 8 | 双精度浮点数 |
DECIMAL(M,D) | 整数部分:⌈(M - D) / 4⌉ * 2, 小数部分:⌈D / 4⌉ * 2, +1 字节符号位 | 定点数,存储大小取决于声明的精度和标度 |
CHAR(N) | N | 定长字符串,最大 255 字节 |
VARCHAR(N) | N + 1 或 N + 2 | 变长字符串,长度取决于最大长度(<= 255 则加 1 字节,否则加 2 字节) |
TEXT | 最大 65535 | 长文本数据 |
BLOB | 最大 65535 | 二进制大对象 |
MEDIUMTEXT | 最大 16777215 | 中等长度文本 |
MEDIUMBLOB | 最大 16777215 | 中等长度二进制对象 |
LONGTEXT | 最大 4294967295 | 长文本数据 |
LONGBLOB | 最大 4294967295 | 长二进制对象 |
DATE | 3 | |
TIME | 3 | |
DATETIME | 8 | |
TIMESTAMP | 4 | 从1970-01-01 00:00:01至今的秒数 |
YEAR | 1 | |
BIT(N) | N | 位字段,占用字节取决于位数 |
下面是 BIT 类型的一些示例及其对应的存储大小:
数据类型 | 大小(字节) |
---|---|
BIT(1) | 1 |
BIT(9) | 2 |
BIT(17) | 3 |
BIT(25) | 4 |
BIT(33) | 5 |
BIT(41) | 6 |
BIT(49) | 7 |
BIT(57) | 8 |
这个表格展示了 BIT 类型在不同位数下的存储大小。例如,BIT(1) 到 BIT(8) 都占用 1 个字节,BIT(9) 到 BIT(16) 占用 2 个字节,依此类推。这种计算方法适用于所有 BIT(N) 类型,其中 N 可以从 1 到 64
通过上述表格,计算单行记录的大小
id (INT): 占用 4 字节。
username (VARCHAR(40)): 最大占用 40 字节, 1个字节前缀。
profile_pic (VARCHAR(200)): 最大占用 200 字节, 1个字节前缀。
gender (SMALLINT): 占用 2 字节。
date_of_birth (DATE): 占用 3 字节。
created_at (TIMESTAMP): 占用 4 字节。
updated_at (TIMESTAMP): 占用 4 字节。
4 + 40 + 1 + 200 + 1 + 3 + 2 + 8 = 259 字节
参数 | 描述 | 初始值 | 五年后预测值 |
---|---|---|---|
用户数量 | 初始用户量及预期增长率 | 500万 | 1.2亿 |
单行数据大小 | 根据字段类型和长度评估 | 259 字节 | 假设增加至 300 字节 |
总容量 | 根据用户数和单行大小计算 | 约 1.3 GB | 约 34 GB |
分表策略 | 用户量增长分表策略 | 每增长200万用户分一次表 | 每增长200万用户分一次表 |
性能与成本评估
性能提升:分表后查询性能显著提升,尤其在高峰时段。
成本考量:存储成本有所增加,但由于性能优化,整体效益提高。
相关文章:
MYSQL分表容量预估:简明指南
随着数据量的日益增长,分表技术成为优化mysql数据库性能的重要策略。本文介绍一种简明有效的预估分表容量大小的方法,帮助开发者和数据库管理员进行有效的资源规划。 背景 在处理大规模数据时,为了优化性能和管理便利,常常采用分…...

面试宝典进阶之Java线程面试题
T1、【初级】线程和进程有什么区别? (1)线程是CPU调度的最小单位,进程是计算分配资源的最小单位。 (2)一个进程至少要有一个线程。 (3)进程之间的内存是隔离的,而同一个…...

BOM简介
1.1 常用的键盘事件 1.1.1 键盘事件 键盘事件触发条件onkeydown按键被按下时触发onkeypress按键被按下时触发onkeyup按键被松开时触发 注意:addEventListener事件不需要加on <script>//1. keydown 按键按下的时候触发,按任意键都触发,也可以识…...

Java中的集合框架
概念与作用 集合概念 现实生活中:很多事物凑在一起 数学中的集合:具有共同属性的事物的总体 java中的集合类:是一种工具类,就像是容器,储存任意数量的具有共同属性的对象 在编程时,常常需要集中存放多个…...

Rustdesk打开Win10 下客户端下面服务不会自启,显示服务未运行
环境: Rustdesk1.19 问题描述: Rustdesk打开Win10 下客户端下面服务不会自启,显示服务未运行 解决方案: 1.查看源代码 pub async fn start_all() {crate::hbbs_http::sync::start();let mut nat_tested = false;check_zombie()...
【SPDK】【NoF】使用SPDK部署NVMe over TCP
SPDK NVMe over Fabrics Target是一个用户空间应用程序,通过以太网,Infiniband或光纤通道等结构呈现块设备,SPDK目前支持RDMA和TCP传输。 本文将在已经编译好SPDK的基础上演示如何使用SPDK搭建NVMe over TCP,前提是您已经将一块NVMe硬盘挂载…...

Spring boot 3 集成rocketmq-spring-boot-starter解决版本不一致问题
安装RocketMQ根据上篇文章使用Docker安装RocketMQ并启动之后,有个隐患详情见下文 Spring Boot集成 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-starter</artifactId><version>2.2…...
python爬虫实战(6)--获取某度热榜
1. 项目描述 需要用到的类库 pip install requests pip install beautifulsoup4 pip install pandas pip install openpyxl然后,我们来编写python脚本,并引入需要的库: import requests from bs4 import BeautifulSoup import pandas as p…...
十三、K8S之亲和性
亲和性 一、概念 在K8S中,亲和性(Affinity)用来定义Pod与节点关系的概念,亲和性通过指定标签选择器和拓扑域约束来决定 Pod 应该调度到哪些节点上。与污点相反,它主要是尽量往某节点靠。 亲和性是 Kubernetes 中非常…...
对于网关的理解-Gateway
因为在使用微服务的时候,会有多端请求。会产生以下问题: 1.客户端需要记住每一个微服务的url 2.主机端口也会直接暴露 3.每一个微服务都需要认证 4.存在跨域问题 所以网关可以解决统一访问、隐藏真实的服务器地址、网关进行统一认证、解决跨域问题、…...

win10 - Snipaste截图工具的使用
win10 - Snipaste截图工具的使用 Step 1:下载 下载链接 提取码:wuv2 Step 2:直接解压可用 找到解压好的目录,并双击exe文件即可 Step 3:设置开机启动 在电脑右下角找到snipaste图标,右键,找…...

Selenium 学习(0.19)——软件测试之基本路径测试法——拓展案例
1、案例 请使用基本路径法为变量year设计测试用例,year的取值范围是1000<year<2001。代码如下: 2、步骤 先画控制流程图 再转化为控制流图(标出节点) V(G) 总区域数 4 V(G) E - N 2 (边数 - 节点数 2…...
工作记录-------正则表达式---小白也能看懂
什么是正则表达式 正则表达式是一种强大的工具,用于匹配和识别文本模式。 下面是一个基本的介绍: ^ 和 $: 这些是锚定字符,分别匹配字符串的开头和结尾。例如,^Hello匹配以 “Hello” 开头的字符串,end$匹配以 “en…...

C3-1.3.1 无监督学习——异常检测
C3-1.3.1 无监督学习——异常检测 1、举例:异常值检测示例——密度评估法 1.1 举一个例子 这里做的是 查看飞机发动机 异常检测: 左侧:X1 ,X2 … 是 可能会影响发动机状态的特征右侧: Dataset:训练数据集New engine…...

1.4.1机器学习——梯度下降+α学习率大小判定
1.4.1梯度下降 4.1、梯度下降的概念 ※【总结一句话】:系统通过自动的调节参数w和b的值,得到最小的损失函数值J。 如下:是梯度下降的概念图。 我们有一个损失函数 J(w,b),包含两个参数w和b(你可以想象成J(w,b) w*x…...
在IntelliJ IDEA中,.idea文件是什么,可以删除吗
相信有很多小伙伴,在用idea写java代码的时候,创建工程总是会出现.idea文件,该文件也从来没去打开使用过,那么它在我们项目里面,扮演什么角色,到底能不能删除它呢? 1、它是什么?有什么…...

【Spring Cloud】Gateway组件的三种使用方式
🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《Spring Cloud》。🎯🎯 &am…...
对象的复制
方式一:sv 的new函数 trans tr1,tr2; malbox.get(tr2); tr1 new tr2;//仅用于浅拷贝,拷贝后tr1,tr2为两个独立的对象方式二:uvm 域的自动化常用函数:copy / clone / 使用前提: 1. 函数都可用于uvm_object类型&…...

基于 Python+Neo4j+医药数据,构建了一个知识图谱的自动问答系统
知识图谱是目前自然语言处理的一个热门方向。目前知识图谱在各个领域全面开花,如教育、医疗、司法、金融等。 本项目立足医药领域,以垂直型医药网站为数据来源,以疾病为核心,构建起一个包含7类规模为4.4万的知识实体,…...

Maven之属性管理
1.属性管理 1.1 属性配置与使用 ①:定义属性 <!--定义自定义属性--> <properties><spring.version>5.2.10.RELEASE</spring.version> </properties>②:引用属性 <dependency><groupId>org.springframewor…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...