当前位置: 首页 > news >正文

《NLP入门到精通》栏目导读

 一、说明

        栏目《NLP入门到精通》本着从简到难得台阶式学习过度。将自然语言处理得知识贯穿过来。本栏目得前导栏目是《深度学习》、《pytorch实践》,因此,读者需要一定得深度学习基础,才能过度到此栏目内容。

二、博客建设理念

        本博客基地,将建成人工智能领域的参考资料库;这个资料库收集的是AI的关键技术、AI最新技术。博客文章来源有三:1 博主本人所作,2 另一些是学习中的笔记文档,3 追踪当前全球AI前缘技术论文,这些所谓的前缘性技术,就是尚没有编程印刷书籍的技术文章。对于这些他人文章,博主进行二次创作,如:多文合并、追加段落、重新组织。因而无版权之忧。

        另外,本博客基地文章必须保证有一定技术和理论高度,大致与硕士生水平相当。

三、收费栏目订阅方法

3.1 付费价格标准

本博客基地,原则上收费文章为每篇0.5-1元左右。以下表标示栏目的标价信息。

 3.2 人工智能综合栏目

        【人工智能综合】栏目文章最多,收费最高。而【人工智能综合】不是一个新栏目,是其他栏目的合编。它包含了七个AI题目的栏目,如下图:

3.3 栏目中有些文章与栏目不符合

有些NLP栏目出现与本栏目不符的题目,似乎栏目管理不专业。情况是这样的,付费栏目只能追加,系统不允许删除,一旦操作失误就无法调整和改正,因此也就无法严格管理了,请大家见谅。

四、 栏目《NLP入门到精通》-基础文章

栏目文档导读表
单元内容范围专题描述备注
第一单元: 文本分类,基于统计学模型。待续
第二单元   词嵌入,基于深度学习网络。
第三单元: CNN。LSTM,序列神经网络,句法分析。
第四单元: 在词嵌入基础上,对上下文进行分析。
第五单元: Bert词法,词性分析。
第六单元  transformers语言翻译,词法、句法综合。
第七单元  LLM大语言模型。
第八单元  主题模型,文本摘要提取,语义分解。
第九单元  综合知识。


 

第一单元:文本分类

        该专题专门针对 基础学员,对基本的pytorch内容、语法、类和属性等进行了解,以便以后能明确无疑地应用。此专题在不断更新中,目前的全部文章是:

【NLP模型】文本建模(2)TF-IDF关键词提取原理 

【NLP概念源和流】 02-稠密文档表示(第 2/20 部分) 

【NLP】 实施文本分类器  

【NLP】 文本技术方法指南  

【NLP】PageRank、TextRank算法的原理解析_textrank和pagerank 

第二单元:词嵌入

【NLP概念源和流】 06-编码器-解码器模型(6/20 部分) 

【NLP概念源和流】 03-基于计数的嵌入,GloVe(第 3/20 部分) 

【深度学习】编码器专题(01) 

【深度学习】编码器专题(02) 

【NLP】基础工程:词嵌入_nlp词嵌入 

【深度学习】 NLP和神经网络表示 

【NLP】Word2vec概念和演进史_word2vec的发展 

第三单元:CNN和LSTM

【深度学习】看似不合理实则有效的RNN 

【NLP概念源和流】 04-过度到RNN(第 4/20 部分)

【BBC新闻文章分类】使用 TF 2.0和 LSTM 的文本分类 

【深度学习】深度了解 LSTM 

【NLP】LSTM追根溯源 

【NLP】理解LSTM的内在逻辑 

第四单元:Attension

【NLP】多头注意力概念(01) 

【NLP】Attention机制和RNN 

第五单元:Bert

【NLP】使用BERT构建一个情绪分析模型 

【NLP】BERT和原理揭示 

【NLP】一项NER实体提取任务_无水先生的博客 

【NLP】用NER自动实现简历摘要提取的案例 

第六单元:Transformers

深入了解“注意力”和“变形金刚” -第1部分 

用 Pytorch 自己构建一个Transformer 

【NLP】机器翻译相关原理 

【 NLP 】 句子transformer调用备忘录 

【NLP】transformers的位置编码 

【NLP】小项目:基于transformer的文本摘要 

 【NLP】分步图解transformer 数学示例 

【NLP】Transformer模型原理(1) 

【NLP】Transformer模型原理(2) 

第七单元:大语言模型

【NLP】GPT-2:通过可视化了解语言生成  

第八单元 :主题模型

【NLP】使用 LSA、PLSA、LDA 和 lda2Vec 进行主题建模 

【深度学习】基于BRET的高级主题检测- 

通过深度学习进行高级主题检测 

第九单元:NLP综合

自然语言入行必知的基础概念 

【NLP】KMP匹配算法 

【NLP】有限自动机的KMP算法_kmp自动机 

【NLP】从双曲面到双曲几何庞加莱盘 

【人工智能】人工智能和双曲几何 

【NLP】基于庞加莱损失函数的词嵌入模型 

【NLP模型】文本建模(1)(BoW、N-gram、tf-idf) 

语音识别:时间序列Damerau–Levenshtein距离_damerau-levenshtein 

 语音识别:时间序列的匹配算法(Needleman-Wunsch 算法)_时间匹配算法

【NLP】斯密斯-沃特曼的对齐算法(python)-CSDN博客

【NLP】自然语言处理之综述_自然语言处理综述-CSDN博客

 语音识别:时间序列的Smith–Waterman对齐算法_smith-waterman 

五、 栏目《NLP入门到精通》-后追加文章

(以上是该栏目的基本内容,下面是全部文章列出)

《NLP入门到精通》栏目导读(01/2)
【NLP模型】文本建模(2)TF-IDF关键词提取原理_tf-idf 关键词提取
【NLP概念源和流】 02-稠密文档表示(第 2/20 部分)
【NLP】 实施文本分类器_分类器 文本分析
【NLP】 文本技术方法指南
【NLP】PageRank、TextRank算法的原理解析_textrank和pagerank
【NLP概念源和流】 06-编码器-解码器模型(6/20 部分)_nlp解码器和编码器
【NLP概念源和流】 03-基于计数的嵌入,GloVe(第 3/20 部分)
【深度学习】编码器专题(01)
【深度学习】编码器专题(02)_mask: batch size, 1, sequence length (bool)
【NLP】基础工程:词嵌入_nlp词嵌入
【深度学习】 NLP和神经网络表示
【NLP】Word2vec概念和演进史_word2vec的发展
【深度学习】看似不合理实则有效的RNN
【NLP概念源和流】 04-过度到RNN(第 4/20 部分)
【BBC新闻文章分类】使用 TF 2.0和 LSTM 的文本分类
【深度学习】深度了解 LSTM 网络
【NLP】LSTM追根溯源
【NLP】理解LSTM的内在逻辑_lstm时间轴nlp的理解
【NLP】多头注意力概念(01)
【NLP】Attention机制和RNN_rnn attention机制
【NLP】使用BERT构建一个情绪分析模型_bert情绪分析模型
【NLP】BERT和原理揭示
【NLP】一项NER实体提取任务_nlp 给定一段新闻文本,本任务的目标是抽取出文本中的实体 代码
【NLP】用NER自动实现简历摘要提取的案例
深入了解“注意力”和“变形金刚” -第1部分
用 Pytorch 自己构建一个Transformer
【NLP】机器翻译相关原理
【 NLP 】 句子transformer调用备忘录_现在如何调用transformer
【NLP】transformers的位置编码
【NLP】小项目:基于transformer的文本摘要_transformer文本摘要
【NLP】分步图解transformer 数学示例
【NLP】Transformer模型原理(1)_a mathematical framework for transformer circuits.
【NLP】Transformer模型原理(2)
【NLP】GPT-2:通过可视化了解语言生成
【NLP】使用 LSA、PLSA、LDA 和 lda2Vec 进行主题建模
【深度学习】基于BRET的高级主题检测
通过深度学习进行高级主题检测
自然语言入行必知的基础概念
【NLP】KMP匹配算法
【NLP】从双曲面到双曲几何庞加莱盘_双叶双曲面 庞加莱圆盘 投影
【人工智能】人工智能和双曲几何_人工智能 几何
【NLP】基于庞加莱损失函数的词嵌入模型
【NLP模型】文本建模(1)(BoW、N-gram、tf-idf)_n-gram和bow
语音识别:时间序列Damerau–Levenshtein距离_damerau-levenshtein
语音识别:时间序列的匹配算法(Needleman-Wunsch 算法)_语音识别needleman-wunsch
【NLP】斯密斯-沃特曼的对齐算法(python)_python 实现smith-waterman算法局部比对
【NLP】自然语言处理之综述_nlp的综述最新
语音识别:时间序列的Smith–Waterman对齐算法_smith-waterman
Ubuntu系统如何连接WiFi_ubuntu wifi
Ubuntu知识: 文件压缩和解压?(zip指令)_ubuntu zip
【机器学习】了解 AUC - ROC 曲线_auroc曲线
机器视觉:ransac算法详解
halcon知识:常见三种模板匹配方法总结_halcon 模板匹配
《AI基本原理和python实现》栏目介绍
Simpy简介:python仿真模拟库-03/5
深度学习在语义分割中的进展与应用
机器学习指南:如何学习机器学习?
图卷积网络:GNN 简介【01/4】_pyg to_dense_adj
【NLP的python库(01/4) 】: NLTK_nltk.download('punkt') nltk.download('stopwords')
单词故事嵌入:通过自然语言处理解开叙事
RNN 单元:分析 GRU 方程与 LSTM,以及何时选择 RNN 而不是变压器
如何使用BERT生成单词嵌入?_bert如何做词向量嵌入
GPT 内部 — I : 了解文本生成
探索意义的深度:自然语言处理中的语义相似性
解码自我注意的魔力:深入了解其直觉和机制_注意力层的查询、键、值是模型参数吗
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
谷歌BERT:从自然语言处理(NLP)初学者到高级的综合指南_google bert
LLM;超越记忆《第 2 部分 》
LLM:《第 3 部分》从数学角度评估封闭式LLM的泛化能力
深入了解前馈网络、CNN、RNN 和 Hugging Face 的 Transformer 技术!_前馈神经网络和cnn的区别
保留网络[02/3]:大型语言模型转换器的继任者”_retnet中的γ是如何实现的
NLP:从头开始的文本矢量化方法_nlp 文本向量化
3 — NLP 中的标记化:分解文本数据的艺术_标记化技术的参数
LLM:《第 1 部分》只是一个记忆技巧吗?
深入理解注意力机制(上)-起源
大型语言模型:DistilBERT — 更小、更快、更便宜、更轻_中文大语言模型参数最小的是什么
ConvNets 与 Vision Transformers:数学深入探讨
情感分析工具: TextBlob 与 VADER 的对比_用textblob、vader,采用离散表示法,按照正面、负面、中性进行划分,以得出量化的数
用于自然语言处理的 Python:理解文本数据_python文本分析 提取数据含义
Ultra:知识图谱推理的基础模型
用于智能图像处理的计算机视觉和 NLP_图像 nlp
NLP 项目:维基百科文章爬虫和分类 - 语料库阅读器_wiki爬虫
使用大型语言模型进行文本摘要_大语言模型 多文档理解 摘要
ChatGPT 在机器学习中的应用_chartgpt机器学习
【TensorFlow Hub】:有 100 个预训练模型等你用_model = hub.keraslayer() 行人检测
变分自动编码器【03/3】:使用 Docker 和 Bash 脚本进行超参数调整
【NLP的python库(02/4) 】:Spacy_pycharm spacy语言模型
2、NLP文本预处理技术:词干提取和词形还原_nlp文本大纲提取
从NLP到聊天机器人_java nlp 聊天机器人
NLP:使用 SciKit Learn 的文本矢量化方法
【NLP的Python库(04/4)】:Flair_flair分类器
【Gensim概念】01/3 NLP玩转 word2vec_gensim.downloader.load
如何将转换器应用于时序模型
掌握 AI 和 NLP:深入研究 Python — 情感分析、NER 等
深入了解“注意力”和“变形金刚”-第2部分
【NLP概念源和流】 05-引进LSTM网络(第 5/20 部分)
【NLP概念源和流】 01-稀疏文档表示(第 1/20 部分)
【NLP】多头注意力概念(02)
【NLP】理解LSTM的内在逻辑
【人工智能数学:01 高等概率论】(2) 离散型概率空间_离散概率空间
 

相关文章:

《NLP入门到精通》栏目导读

一、说明 栏目《NLP入门到精通》本着从简到难得台阶式学习过度。将自然语言处理得知识贯穿过来。本栏目得前导栏目是《深度学习》、《pytorch实践》,因此,读者需要一定得深度学习基础,才能过度到此栏目内容。 二、博客建设理念 本博客基地&am…...

C++学习笔记——类继承

目录 一、一个简单的基类 1.1封装性 1.2继承性 1.3虚函数 1.4多态性 二、基类 2.1一个简单的C基类的示例 2.2 Animal是一个基类。 三、继承 3.1概念 3.2is-a关系 3.3多态公有继承 3.4静态联编和动态联编 3.5访问控制 3.6ABC理念 一、一个简单的基类 C中的基类是一…...

ARCGIS PRO SDK 使用条件管理 Pro UI

ARCGIS PRO UI简单介绍以下&#xff1a; 第一步&#xff1a;在Config.daml中在</AddInfo>标签下加上条件<conditions>标签&#xff08;必须添加的&#xff09; <conditions><!-- 定义条件 &#xff0c;此处定义了两个--Tab 另一个为 group><insert…...

Halcon经典的边缘检测算子Sobel/Laplace/Canny

Halcon经典的边缘检测算子 文章目录 Halcon经典的边缘检测算子1. Sobel算子2. Laplace 算子3. Canny 算子4. 总结 关于边缘检测&#xff0c;有许多经典的算子&#xff0c;各大图形处理库都有各自的边缘检测算子&#xff0c;这里简要介绍几种。 1. Sobel算子 Sobel算子结合了高…...

用单片机设计PLC电路图

自记&#xff1a; 见另一篇文章&#xff0c;MOS驱动差了一个充电电容&#xff0c;栅极电容充电会有问题&#xff1b; 光耦用的直插&#xff0c;但板子用的贴片&#xff0c;此文档仅供参考 基本列出了PCB板情况&#xff0c;基础元器件&#xff0c;部分连接&#xff0c;原理等…...

【设计模式-6】建造者模式的实现与框架中的应用

建造者模式又被成为生成器模式&#xff0c;是一种使用频率比较低&#xff0c;相对复杂的创建型模式&#xff0c;在很多源码框架中可以看到建造者的使用场景&#xff0c;稍后我们会在本文末尾展示几个框架的使用案例。  建造者模式所构造的对象通常是比较复杂而且庞大的&#x…...

PositiveSSL和Sectigo的多域名证书

首先&#xff0c;我们要知道PositiveSSL是Sectigo旗下的子品牌&#xff0c;提供多种类型的SSL数字证书&#xff0c;包括DV基础型的多域名SSL证书。Sectigo的SSL证书产品同样比较丰富&#xff0c;不仅有DV基础型多域名SSL证书&#xff0c;还有OV企业型以及EV增强型的多域名SSL证…...

Docker:docker exec命令简介

介绍 docker exec [OPTIONS] 容器名称 COMMAND [ARG...] OPTIONS说明&#xff1a; -d&#xff0c;以后台方式执行命令&#xff1b; -e&#xff0c;设置环境变量 -i&#xff0c;交互模式 -t&#xff0c;设置TTY -u&#xff0c;用户名或UID&#xff0c;例如myuser:myu…...

【大数据进阶第三阶段之Hive学习笔记】Hive的数据类型与数据操作

目录 1、Hive数据类型 1.1、基本数据类型 1.2、集合数据类型 1.3、类型转化 2、DDL数据定义 2.1、创建数据库 2.2、查询数据库 2.3删除数据库 2.4、创建表 2.4.1、内部表 2.4.2、外部表 2.4.3管理表与外部表的互相转换 2.5、分区表&#xff08;partition&#xff…...

GPT2:Language Models are Unsupervised Multitask Learners

目录 一、背景与动机 二、卖点与创新 三、几个问题 四、具体是如何做的 1、更多、优质的数据&#xff0c;更大的模型 2、大数据量&#xff0c;大模型使得zero-shot成为可能 3、使用prompt做下游任务 五、一些资料 一、背景与动机 基于 Transformer 解码器的 GPT-1 证明…...

微创新与稳定性的权衡

之前做过一个项目&#xff0c;业务最高峰CPU使用率也才50%&#xff0c;是一个IO密集型的应用。里面涉及一些业务编排&#xff0c;所以为了提高CPU使用率&#xff0c;我有两个方案&#xff1a;一个是简单的梳理将任务可并行的采用并行流、额外线程池等方式做并行&#xff1b;另外…...

对回调函数的各种讲解说明

有没有跟我师弟一样的童靴~&#xff0c;学习和使用ROS节点时&#xff0c;对其中的callback函数一直摸不着头脑的&#xff0c;以下这么多回调函数的讲解&#xff0c;挨个看&#xff0c;你总会懂的O.o 回调函数怎么调用,如何定义回调函数&#xff1a; 回调函数怎么调用,如何定义…...

Java多线程:创建多线程的三种方式

在Java中&#xff0c;有三种方式创建多线程&#xff0c;继承类Thread&#xff0c;继承接口Runnable&#xff0c;继承接口Callable。其中Thread和Runnable需要重写方法run&#xff0c;方法run没有返回值&#xff1b;Callable需要重写方法call&#xff0c;方法call可以返回值。 …...

Unity中打印信息的两种方式

不继承MonoBehaviour的普通C#类中打印信息&#xff1a; 使用Debug类的方法&#xff1a; Unity提供了Debug类&#xff0c;其中包含了一些用于打印信息的静态方法。以下是常用的几种方法&#xff1a; Debug.Log(message)&#xff1a;打印普通信息。Debug.LogWarning(message)&a…...

给定n个字符串s[1...n], 求有多少个数对(i, j), 满足i < j 且 s[i] + s[j] == s[j] + s[i]?

题目 思路&#xff1a; 对于字符串a&#xff0c;b, (a.size() < b.size()), 考虑对字符串b满足什么条件&#xff1a; 由1、3可知a是b的前后缀&#xff0c;由2知b有一个周期是3&#xff0c;即a.size()&#xff0c;所以b是用多个a拼接而成的&#xff0c;有因为a是b的前后缀&…...

Linux磁盘空间与文件大小查看命令详解

1. 查看磁盘空间大小 在Linux系统中&#xff0c;有多个命令可以用来查看磁盘空间的使用情况。最常用的命令是df&#xff08;disk free&#xff09;。 df -hdf命令的 -h 选项以人类可读的方式显示磁盘空间&#xff0c;该命令将显示文件系统的使用情况、剩余空间等信息。 2. 查看…...

网络通信过程的一些基础问题

客户端A在和服务器进行TCP/IP通信时&#xff0c;发送和接收数据使用的是同一个端口吗&#xff1f; 这个问题可以这样来思考&#xff1a;在客户端A与服务器B建立连接时&#xff0c;A需要指定一个端口a向服务器发送数据。当服务器接收到A的报文时&#xff0c;从报文头部解析出A的…...

STL——stack容器和queue容器详解

目录 &#x1f4a1;stack &#x1f4a1;基本概念 常用接口 &#x1f4a1;queue &#x1f4a1;基本概念 &#x1f4a1;常用接口 &#x1f4a1;stack &#x1f4a1;基本概念 栈&#xff08;stack&#xff09;&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端…...

django websocket实现聊天室功能

注意事项channel版本 django2.x 需要匹配安装 channels 2 django3.x 需要匹配安装 channels 3 Django3.2.4 channels3.0.3 Django3.2.* channels3.0.2 Django4.2 channles3.0.5 是因为最新版channels默认不带daphne服务器 直接用命令 python manage.py runsever 默认运行的是w…...

软件测评中心▏性能测试之压力测试、负载测试的区别和联系简析

在如今的信息时代&#xff0c;软件已经成为人们日常工作和生活不可或缺的一部分。然而&#xff0c;随着软件的发展和应用范围的不断扩大&#xff0c;软件性能的优劣也成为了影响用户使用体验的重要因素。 软件性能测试即对软件在不同条件下的性能进行评估和验证的过程。通过模…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...