当前位置: 首页 > news >正文

代码随想录算法训练营第24天 | 理论基础 77. 组合

目录

理论基础

什么是回溯法

回溯法的效率

回溯法解决的问题

如何理解回溯法

回溯法模板

77. 组合  

💡解题思路

💻实现代码


理论基础

回溯算法大纲

什么是回溯法

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

回溯法的效率

虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

回溯法解决的问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

组合是不强调元素顺序的,排列是强调元素顺序

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

记住组合无序,排列有序,就可以了。

如何理解回溯法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

回溯法模板

  • 回溯函数模板返回值以及参数

在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。回溯算法中函数返回值一般为void。

回溯函数伪代码如下:

void backtracking(参数)
  • 回溯函数终止条件

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

所以回溯函数终止条件伪代码如下:

if (终止条件) {存放结果;return;
}
  • 回溯搜索的遍历过程

在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

如图:

回溯算法理论基础

注意图中,我特意举例集合大小和孩子的数量是相等的!

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

分析完过程,回溯算法模板框架如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}
 

77. 组合  

题目链接:77.组合
 

给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。

示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]

💡解题思路

把组合问题抽象为如下树形结构:

77.组合

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

💻实现代码

class Solution {List<List<Integer>> res =new ArrayList<>();LinkedList<Integer> path =new LinkedList<>();public List<List<Integer>> combine(int n, int k) {backtracking(n,k,1);return res;}private void backtracking(int n,int k,int startIndex){if(path.size()==k){res.add(new ArrayList<>(path));return;}for(int i=startIndex;i<=n-(k-path.size())+1;i++){path.add(i);backtracking(n,k,i+1);path.removeLast();}}
}

相关文章:

代码随想录算法训练营第24天 | 理论基础 77. 组合

目录 理论基础 什么是回溯法 回溯法的效率 回溯法解决的问题 如何理解回溯法 回溯法模板 77. 组合 &#x1f4a1;解题思路 &#x1f4bb;实现代码 理论基础 什么是回溯法 回溯法也可以叫做回溯搜索法&#xff0c;它是一种搜索的方式。 回溯法的效率 虽然回溯法很难&#xff…...

【深度学习环境搭建】Windows搭建Anaconda3、已经Pytorch的GPU版本

目录 搭建Anaconda3搭建GPU版本的Pytorch你的pip也要换源&#xff0c;推荐阿里源打开conda的PowerShell验证 搭建Anaconda3 无脑下载安装包安装&#xff08;自行百度&#xff09; 注意点&#xff1a; 1、用户目录下的.condarc需要配置&#xff08;自定义环境的地址&#xff08…...

基于WebFlux的Websocket的实现,高级实现自定义功能拓展

基于WebFlux的Websocket 一、导入XML依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-webflux</artifactId> </dependency><!-- 或者引入jackson --> <dependency><group…...

使用 LLVM clang C/C++ 编译器编译 OpenSSL 3.X库

1、下载 OpenSSL 3.X 库的源代码放到待编译目录 2、解压并接入 OpenSSL 3.X 库源码的根目录 3、复制 ./Configure 一个取名为 ./Configure-clang 4、修改 ./Configure-clang 找到配置段&#xff1a; CC CXX CPP LD 把它们改成 CC > "/usr/bin/clang-…...

【信息安全】hydra爆破工具的使用方法

hydra简介 hydra又名九头蛇&#xff0c;与burp常规的爆破模块不同&#xff0c;hydra爆破的范围更加广泛&#xff0c;可以爆破远程桌面连接&#xff0c;数据库这类的密码。他在kali系统中自带。 参数说明 -l 指定用户名 -L 指定用户名字典文件 -p 指定密码 -P 指…...

uniapp中uview组件库丰富的CountTo 数字滚动使用方法

目录 #平台差异说明 #基本使用 #设置滚动相关参数 #是否显示小数位 #千分位分隔符 #滚动执行的时机 #API #Props #Methods #Event 该组件一般用于需要滚动数字到某一个值的场景&#xff0c;目标要求是一个递增的值。 注意 如果给组件的父元素设置text-align: cente…...

inflate流程分析

一.inflate的三参数重载方法else里面逻辑 我们先看到setContentView里面的inflate的调用链&#xff1a; public View inflate(LayoutRes int resource, Nullable ViewGroup root) {return inflate(resource, root, root ! null);}public View inflate(LayoutRes int resource…...

数据挖掘实战-基于机器学习的电商文本分类模型

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

第8章-第4节-Java中字节流的缓冲流

1、缓冲流&#xff1a;属于高级IO流&#xff0c;并不能直接读写数据&#xff0c;需要依赖于基础流。缓冲流的目的是为了提高文件的读写效率&#xff1f;那么是如何提高文件的读写效率的呢&#xff1f; 在内存中设置一个缓冲区&#xff0c;缓冲区的默认大小是8192字节&#xff…...

NULL是什么?

NULL是一个编程术语&#xff0c;通常用于表示一个空值或无效值。在很多编程语言中&#xff0c;NULL用于表示一个变量或指针不引用任何有效的对象或内存位置。 NULL可以看作是一个特殊的值&#xff0c;表示缺少有效的数据或引用。当一个变量被赋予NULL值时&#xff0c;它表示该变…...

FreeRTOS 基础知识

这个基础知识也是非常重要的&#xff0c;那我们要学好 FreeRTOS&#xff0c;这些都是必不可少的。 那么就来看一下本节有哪些内容&#xff1a; 首先呢就是介绍一下什么是任务调度器。接着呢就是任务它拥有哪一些状态了。那这里的内容不多&#xff0c;但是呢都是非常重要的。 …...

【野火i.MX6NULL开发板】挂载 NFS 网络文件系统

0、前言 参考资料&#xff1a; &#xff08;误人子弟&#xff09;《野火 Linux 基础与应用开发实战指南基于 i.MX6ULL 系列》PDF 第22章 参考视频&#xff1a;&#xff08;成功&#xff09; https://www.bilibili.com/video/BV1JK4y1t7io?p26&vd_sourcefb8dcae0aee3f1aab…...

在JavaScript中,Object.assign()方法或展开语法(...)来合并对象,Object.freeze()方法来冻结对象,防止对象被修改

文章目录 一、Object.freeze()方法来冻结对象&#xff0c;防止对象被修改1、基本使用2、冻结数组2.1、浅冻结2.1、深冻结 3、应用场景4、Vue中使用Object.freeze 二、Object.assign()方法或展开语法&#xff08;...&#xff09;来合并对象1、Object.assign()1.1、语法1.2、参数…...

池化、线性、激活函数层

一、池化层 池化运算是深度学习中常用的一种操作&#xff0c;它可以对输入的特征图进行降采样&#xff0c;从而减少特征图的尺寸和参数数量。 池化运算的主要目的是通过“收集”和“总结”输入特征图的信息来提取出主要特征&#xff0c;并且减少对细节的敏感性。在池化运算中…...

ES-极客学习第二部分ES 入门

基本概念 索引、文档、节点、分片和API json 文档 文档的元数据 需要通过Kibana导入Sample Data的电商数据。具体参考“2.2节-Kibana的安装与界面快速浏览” 索引 kibana 管理ES索引 在系统中找到kibana配置文件&#xff08;我这里是etc/kibana/kibana.yml&#xff09; vim /…...

Nodejs软件安装​

Nodejs软件安装​ 一、简介 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。 官网&#xff1a;http://nodejs.cn/api/ 我们关注于 node.js 的 npm 功能&#xff0c;NPM 是随同 NodeJS 一起安装的包管理工具&#xff0c;JavaScript-NPM&#xff0c;Java-Maven&…...

Photoshop 2024 (PS2024) v25 直装版 支持win/mac版

Photoshop 2024 提供了多种创意工具&#xff0c;如画笔、铅笔、涂鸦和渐变等&#xff0c;用户可以通过这些工具来创建独特和令人印象深刻的设计效果。增强的云同步&#xff1a;通过 Adobe Creative Cloud&#xff0c;用户可以方便地将他们的工作从一个设备无缝同步到另一个设备…...

ChatGPT绘画生成软件MidTool:智能艺术的新纪元

在人工智能的黄金时代&#xff0c;创新技术不断涌现&#xff0c;改变着我们的生活和工作方式。其中&#xff0c;ChatGPT绘画生成软件MidTool无疑是这一变革浪潮中的佼佼者。它不仅是一个软件&#xff0c;更是一位艺术家&#xff0c;一位智能助手&#xff0c;它的出现预示着智能…...

linux安装MySQL5.7(安装、开机自启、定时备份)

一、安装步骤 我喜欢安装在/usr/local/mysql目录下 #切换目录 cd /usr/local/ #下载文件 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.38-linux-glibc2.12-x86_64.tar.gz #解压文件 tar -zxvf mysql-5.7.38-linux-glibc2.12-x86_64.tar.gz -C /usr/local …...

openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态

文章目录 openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态195.1 分析查询语句运行状态195.1.1 问题现象195.1.2 处理办法 openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态 195.1 分析查询语句运行状态…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...