当前位置: 首页 > news >正文

【Python机器学习】分类器的不确定估计——决策函数

        scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。

        scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_proba。

        以一个二维数据集为例:

import mglearn.tools
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_circles
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as pltX,y=make_circles(noise=0.25,factor=0.5,random_state=1)y_named=np.array(['type0','type1'])[y]
#所有数组的划分方式都是一致的
X_train,X_test,y_train_named,y_test_named,y_train,y_test=train_test_split(X,y_named,y,random_state=0
)
#梯度提升模型
gbrt=GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train,y_train_named)

        对于二分类的情况,decidion_function返回值的形状是(n_samples,),为每个样本都返回一个浮点数:

print('X_test形状:{}'.format(X_test.shape))
print('Decision_function 形状:{}'.format(gbrt.decision_function(X_test).shape))

对于类别1来说,值代表模型对数据点属于“正”类的置信程度。正值代表对正类的偏好,负值代表对反类的偏好,还可以通过查看决策值的正负号来展示预测值:

print('Decision_function:{}'.format(gbrt.decision_function(X_test)[:10]))
print('正负-Decision_function:{}'.format(gbrt.decision_function(X_test)>0))
print('分类:{}'.format(gbrt.predict(X_test)))

对于二分类问题,反类始终是classes_属性的第一个元素,正类是第二个元素,因此,如果想要完全再现predict的输出,需要利用classes_属性:

greater_zore=(gbrt.decision_function(X_test)>0).astype(int)
pred=gbrt.classes_[greater_zore]
print('索引是否与输出相同:{}'.format(np.all(pred==gbrt.predict(X_test))))

decidion_function可以在任意范围取值,取决于数据和参数模型:

decision_function=gbrt.decision_function(X_test)
print('decision_function结果的最大值和最小值:{:.3f}、{:.3f}'.format(np.max(decision_function),np.min(decision_function)))

利用颜色编码画出所有点的decidion_function,还有决策边界:

plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig,axes=plt.subplots(1,2,figsize=(13,5))
mglearn.tools.plot_2d_separator(gbrt,X,ax=axes[0],alpha=.4,fill=True,cm=mglearn.cm2)
scores_image=mglearn.tools.plot_2d_scores(gbrt,X,ax=axes[1],alpha=.4,cm=mglearn.ReBl)
for ax in axes:mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test, markers='^', ax=ax)mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, markers='o', ax=ax)ax.set_xlabel('特征0')ax.set_ylabel('特征1')
cbar=plt.colorbar(scores_image,ax=axes.tolist())
axes[0].legend(['测试分类0','测试分类1','训练分类0','训练分类1'],ncol=4,loc=(.1,1.1))
plt.show()

相关文章:

【Python机器学习】分类器的不确定估计——决策函数

scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。 scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_pr…...

云原生周刊:K8sGPT 加入 CNCF | 2024.1.8

开源项目推荐 VolSync VolSync 使用 rsync 或 rclone 在集群之间异步复制 Kubernetes 持久卷。它还支持通过 Restic 创建持久卷的备份。 KubeClarity KubeClarity 是一种用于检测和管理软件物料清单 (SBOM) 以及容器映像和文件系统漏洞的工具。它扫描运行时 K8s 集群和 CI/…...

LightGBM原理和调参

背景知识 LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,具有支持高效率的并行训练、更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以处理海量数据等优点。 普通的GBDT算法不支持用mini-batch的方式训练,在每一次…...

ROS无人机开发常见错误

飞控部分 一、解锁时飞控不闪红灯,无任何反应,地面站也无报错 解决办法: 打开地面站的遥控器一栏 首先检查右下角Channel Monitor是否有识别出遥控各通道的值,如果没有,检查遥控器是否打开,遥控器和接收…...

Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C#)

Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为视频格式(C#) Baumer工业相机Baumer工业相机的图像转换为OpenCV的图像的技术背景在NEOAPI SDK里实现相机图像转换为视频格式 工业相机通过OpenCV实现相机图像转换为视频格式的优…...

第一次面试总结 - 迈瑞医疗 - 软件测试

🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 注:此次面经全靠小嘴八八,没…...

利用Qt输出XML文件

使用Qt输出xml文件 void PixelConversionLibrary::generateXML() {QFile file("D:/TEST.xml");//创建xml文件if (!file.open(QIODevice::WriteOnly | QIODevice::Text))//以只写方式&#xff0c;文本模式打开文件{qDebug() << "generateXML:Failed to op…...

OpenWrt智能路由器Wan PPPoE拨号配置方法

OpenWrt智能路由器的wan PPPoE拨号配置方法和我们常见的不太一样, 需要先找到wan网卡,然后将协议切换为 PPPoE然后才能看到输入上网账号和密码的地方. 首先登录路由器 http://openwrt.lan/ 然后找到 Network --> Interfaces 这里会显示你当前的路由器的所有接口, 选择 …...

(十一)IIC总线-AT24C02-EEPROM

文章目录 IIC总线篇AT24C02-EEPROM篇主要特性引脚说明AT24Cxx用几位数据地址随机寻址的(存储器组织)AT24C02设备操作AT24CXX设备寻址EEPROM写操作的种类EEPROM读操作的种类实现单字节写实现任意读读写应用 IIC总线篇 前面介绍过了&#xff0c;请参考 (十)IIC总线-PCF8591-ADC/…...

现在做电商还有发展空间吗?哪个平台的盈利比较大?

我是电商珠珠 对于部分人来说&#xff0c;实体店的投入太大&#xff0c;一上来就是十几w&#xff0c;有时候还看不到结果。 所以有的人就瞄准了电商这个圈子&#xff0c;做线上平台。 大家都知道&#xff0c;近年来直播电商很火&#xff0c;所以很多商家都会去找达人带货&am…...

多节点 docker 部署 elastic 集群

参考 Install Elasticsearch with Docker Images 环境 docker # docker version Client: Docker Engine - CommunityVersion: 24.0.7API version: 1.43Go version: go1.20.10Git commit: afdd53bBuilt: Thu Oct 26 09:08:01 202…...

2023年全国职业院校技能大赛软件测试赛题—单元测试卷⑨

单元测试 一、任务要求 题目1&#xff1a;根据下列流程图编写程序实现相应分析处理并显示结果。返回文字“xa*a*b的值&#xff1a;”和x的值&#xff1b;返回文字“xa-b的值&#xff1a;”和x的值&#xff1b;返回文字“xab的值&#xff1a;”和x的值。其中变量a、b均须为整型…...

C++核心编程——文件操作

本专栏记录C学习过程包括C基础以及数据结构和算法&#xff0c;其中第一部分计划时间一个月&#xff0c;主要跟着黑马视频教程&#xff0c;学习路线如下&#xff0c;不定时更新&#xff0c;欢迎关注。 当前章节处于&#xff1a; ---------第1阶段-C基础入门 ---------第2阶段实战…...

【REST2SQL】05 GO 操作 达梦 数据库

【REST2SQL】01RDB关系型数据库REST初设计 【REST2SQL】02 GO连接Oracle数据库 【REST2SQL】03 GO读取JSON文件 【REST2SQL】04 REST2SQL第一版Oracle版实现 信创要求用国产数据库&#xff0c;刚好有项目用的达梦&#xff0c;研究一下go如何操作达梦数据库 1 准备工作 1.1 安…...

GitLab 502 Whoops, GitLab is taking too much time to respond. 解决

1、先通过gitlab-ctl restart进行重启&#xff0c;2分钟后看是否可以正常访问&#xff0c;为什么要2分钟&#xff0c;因为gitlab启动会有很多配套的服务启动&#xff0c;包括postgresql等 2、如果上面不行&#xff0c;再看gitlab日志&#xff0c;通过gitlab-ctl tail命令查看&…...

vi ~/.bashrc 后如何编辑并退出

在使用 vi 编辑器打开 ~/.bashrc 文件后&#xff0c;可以按照以下步骤编辑并保存退出&#xff1a; vi ~/.bashrc 按 i 进入插入模式&#xff1a; 在 vi 编辑器中&#xff0c;按 i 键将进入插入模式。在插入模式中&#xff0c;您可以编辑文本。 编辑文件&#xff1a; 在插入模…...

KVM Vcpu概述

KVM Vcpu概述 Intel VTSMP系统CPU过载使用CPU模型CPU绑定和亲和性CPU优化 Intel VT Intel的硬件虚拟化技术大致分为3类&#xff1a; 1、VT-x技术&#xff1a;是指Intel处理器中的一些虚拟化技术支持&#xff0c;包括CPU中最基础的VMX技术&#xff0c;也包括内存虚拟化的硬件支…...

linux服务器ftp部署

1、ftp服务安装 # 检查是否安装 1、查询安装列表 sudo systemctl list-unit-files --typeservice | grep ftp 2、查询ftp服务状态 sudo service vsftpd status 或者 sudo systemctl status vsftpd # yum安装&#xff0c;一般yum仓库都有ftp安装包 sudo yum install vsftpd # 启…...

NSIS 安装windows 安装包(包括QT和MFC)

NSIS&#xff08;Nullsoft Scriptable Install System&#xff09;是一个开源的 Windows 系统下安装程序制作程序。它提供了安装、卸载、系统设置、文件解压缩等功能。 基本概念 区段 是对应某种安装/卸载选项的处理逻辑&#xff0c;该段代码仅当用户选择相应的选项才被执行…...

K8S----PVPVCSC

一、简介 1、PV(persistent volume)–持久卷 PV是集群中的一块存储,可以由管理员事先静态(static)制备, 也可以使用存储类(Storage Class)来动态(dynamic)制备。 持久卷是集群资源,就像节点也是集群资源一样。PV 持久卷和普通的 Volume 一样, 也是使用卷插件(volume p…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...