当前位置: 首页 > news >正文

【Python机器学习】分类器的不确定估计——决策函数

        scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。

        scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_proba。

        以一个二维数据集为例:

import mglearn.tools
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_circles
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as pltX,y=make_circles(noise=0.25,factor=0.5,random_state=1)y_named=np.array(['type0','type1'])[y]
#所有数组的划分方式都是一致的
X_train,X_test,y_train_named,y_test_named,y_train,y_test=train_test_split(X,y_named,y,random_state=0
)
#梯度提升模型
gbrt=GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train,y_train_named)

        对于二分类的情况,decidion_function返回值的形状是(n_samples,),为每个样本都返回一个浮点数:

print('X_test形状:{}'.format(X_test.shape))
print('Decision_function 形状:{}'.format(gbrt.decision_function(X_test).shape))

对于类别1来说,值代表模型对数据点属于“正”类的置信程度。正值代表对正类的偏好,负值代表对反类的偏好,还可以通过查看决策值的正负号来展示预测值:

print('Decision_function:{}'.format(gbrt.decision_function(X_test)[:10]))
print('正负-Decision_function:{}'.format(gbrt.decision_function(X_test)>0))
print('分类:{}'.format(gbrt.predict(X_test)))

对于二分类问题,反类始终是classes_属性的第一个元素,正类是第二个元素,因此,如果想要完全再现predict的输出,需要利用classes_属性:

greater_zore=(gbrt.decision_function(X_test)>0).astype(int)
pred=gbrt.classes_[greater_zore]
print('索引是否与输出相同:{}'.format(np.all(pred==gbrt.predict(X_test))))

decidion_function可以在任意范围取值,取决于数据和参数模型:

decision_function=gbrt.decision_function(X_test)
print('decision_function结果的最大值和最小值:{:.3f}、{:.3f}'.format(np.max(decision_function),np.min(decision_function)))

利用颜色编码画出所有点的decidion_function,还有决策边界:

plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig,axes=plt.subplots(1,2,figsize=(13,5))
mglearn.tools.plot_2d_separator(gbrt,X,ax=axes[0],alpha=.4,fill=True,cm=mglearn.cm2)
scores_image=mglearn.tools.plot_2d_scores(gbrt,X,ax=axes[1],alpha=.4,cm=mglearn.ReBl)
for ax in axes:mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test, markers='^', ax=ax)mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, markers='o', ax=ax)ax.set_xlabel('特征0')ax.set_ylabel('特征1')
cbar=plt.colorbar(scores_image,ax=axes.tolist())
axes[0].legend(['测试分类0','测试分类1','训练分类0','训练分类1'],ncol=4,loc=(.1,1.1))
plt.show()

相关文章:

【Python机器学习】分类器的不确定估计——决策函数

scikit-learn接口的分类器能够给出预测的不确定度估计,一般来说,分类器会预测一个测试点属于哪个类别,还包括它对这个预测的置信程度。 scikit-learn中有两个函数可以用于获取分类器的不确定度估计:decidion_function和predict_pr…...

云原生周刊:K8sGPT 加入 CNCF | 2024.1.8

开源项目推荐 VolSync VolSync 使用 rsync 或 rclone 在集群之间异步复制 Kubernetes 持久卷。它还支持通过 Restic 创建持久卷的备份。 KubeClarity KubeClarity 是一种用于检测和管理软件物料清单 (SBOM) 以及容器映像和文件系统漏洞的工具。它扫描运行时 K8s 集群和 CI/…...

LightGBM原理和调参

背景知识 LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,具有支持高效率的并行训练、更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以处理海量数据等优点。 普通的GBDT算法不支持用mini-batch的方式训练,在每一次…...

ROS无人机开发常见错误

飞控部分 一、解锁时飞控不闪红灯,无任何反应,地面站也无报错 解决办法: 打开地面站的遥控器一栏 首先检查右下角Channel Monitor是否有识别出遥控各通道的值,如果没有,检查遥控器是否打开,遥控器和接收…...

Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C#)

Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为视频格式(C#) Baumer工业相机Baumer工业相机的图像转换为OpenCV的图像的技术背景在NEOAPI SDK里实现相机图像转换为视频格式 工业相机通过OpenCV实现相机图像转换为视频格式的优…...

第一次面试总结 - 迈瑞医疗 - 软件测试

🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 注:此次面经全靠小嘴八八,没…...

利用Qt输出XML文件

使用Qt输出xml文件 void PixelConversionLibrary::generateXML() {QFile file("D:/TEST.xml");//创建xml文件if (!file.open(QIODevice::WriteOnly | QIODevice::Text))//以只写方式&#xff0c;文本模式打开文件{qDebug() << "generateXML:Failed to op…...

OpenWrt智能路由器Wan PPPoE拨号配置方法

OpenWrt智能路由器的wan PPPoE拨号配置方法和我们常见的不太一样, 需要先找到wan网卡,然后将协议切换为 PPPoE然后才能看到输入上网账号和密码的地方. 首先登录路由器 http://openwrt.lan/ 然后找到 Network --> Interfaces 这里会显示你当前的路由器的所有接口, 选择 …...

(十一)IIC总线-AT24C02-EEPROM

文章目录 IIC总线篇AT24C02-EEPROM篇主要特性引脚说明AT24Cxx用几位数据地址随机寻址的(存储器组织)AT24C02设备操作AT24CXX设备寻址EEPROM写操作的种类EEPROM读操作的种类实现单字节写实现任意读读写应用 IIC总线篇 前面介绍过了&#xff0c;请参考 (十)IIC总线-PCF8591-ADC/…...

现在做电商还有发展空间吗?哪个平台的盈利比较大?

我是电商珠珠 对于部分人来说&#xff0c;实体店的投入太大&#xff0c;一上来就是十几w&#xff0c;有时候还看不到结果。 所以有的人就瞄准了电商这个圈子&#xff0c;做线上平台。 大家都知道&#xff0c;近年来直播电商很火&#xff0c;所以很多商家都会去找达人带货&am…...

多节点 docker 部署 elastic 集群

参考 Install Elasticsearch with Docker Images 环境 docker # docker version Client: Docker Engine - CommunityVersion: 24.0.7API version: 1.43Go version: go1.20.10Git commit: afdd53bBuilt: Thu Oct 26 09:08:01 202…...

2023年全国职业院校技能大赛软件测试赛题—单元测试卷⑨

单元测试 一、任务要求 题目1&#xff1a;根据下列流程图编写程序实现相应分析处理并显示结果。返回文字“xa*a*b的值&#xff1a;”和x的值&#xff1b;返回文字“xa-b的值&#xff1a;”和x的值&#xff1b;返回文字“xab的值&#xff1a;”和x的值。其中变量a、b均须为整型…...

C++核心编程——文件操作

本专栏记录C学习过程包括C基础以及数据结构和算法&#xff0c;其中第一部分计划时间一个月&#xff0c;主要跟着黑马视频教程&#xff0c;学习路线如下&#xff0c;不定时更新&#xff0c;欢迎关注。 当前章节处于&#xff1a; ---------第1阶段-C基础入门 ---------第2阶段实战…...

【REST2SQL】05 GO 操作 达梦 数据库

【REST2SQL】01RDB关系型数据库REST初设计 【REST2SQL】02 GO连接Oracle数据库 【REST2SQL】03 GO读取JSON文件 【REST2SQL】04 REST2SQL第一版Oracle版实现 信创要求用国产数据库&#xff0c;刚好有项目用的达梦&#xff0c;研究一下go如何操作达梦数据库 1 准备工作 1.1 安…...

GitLab 502 Whoops, GitLab is taking too much time to respond. 解决

1、先通过gitlab-ctl restart进行重启&#xff0c;2分钟后看是否可以正常访问&#xff0c;为什么要2分钟&#xff0c;因为gitlab启动会有很多配套的服务启动&#xff0c;包括postgresql等 2、如果上面不行&#xff0c;再看gitlab日志&#xff0c;通过gitlab-ctl tail命令查看&…...

vi ~/.bashrc 后如何编辑并退出

在使用 vi 编辑器打开 ~/.bashrc 文件后&#xff0c;可以按照以下步骤编辑并保存退出&#xff1a; vi ~/.bashrc 按 i 进入插入模式&#xff1a; 在 vi 编辑器中&#xff0c;按 i 键将进入插入模式。在插入模式中&#xff0c;您可以编辑文本。 编辑文件&#xff1a; 在插入模…...

KVM Vcpu概述

KVM Vcpu概述 Intel VTSMP系统CPU过载使用CPU模型CPU绑定和亲和性CPU优化 Intel VT Intel的硬件虚拟化技术大致分为3类&#xff1a; 1、VT-x技术&#xff1a;是指Intel处理器中的一些虚拟化技术支持&#xff0c;包括CPU中最基础的VMX技术&#xff0c;也包括内存虚拟化的硬件支…...

linux服务器ftp部署

1、ftp服务安装 # 检查是否安装 1、查询安装列表 sudo systemctl list-unit-files --typeservice | grep ftp 2、查询ftp服务状态 sudo service vsftpd status 或者 sudo systemctl status vsftpd # yum安装&#xff0c;一般yum仓库都有ftp安装包 sudo yum install vsftpd # 启…...

NSIS 安装windows 安装包(包括QT和MFC)

NSIS&#xff08;Nullsoft Scriptable Install System&#xff09;是一个开源的 Windows 系统下安装程序制作程序。它提供了安装、卸载、系统设置、文件解压缩等功能。 基本概念 区段 是对应某种安装/卸载选项的处理逻辑&#xff0c;该段代码仅当用户选择相应的选项才被执行…...

K8S----PVPVCSC

一、简介 1、PV(persistent volume)–持久卷 PV是集群中的一块存储,可以由管理员事先静态(static)制备, 也可以使用存储类(Storage Class)来动态(dynamic)制备。 持久卷是集群资源,就像节点也是集群资源一样。PV 持久卷和普通的 Volume 一样, 也是使用卷插件(volume p…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...