当前位置: 首页 > news >正文

时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比

时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比

目录

    • 时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比,集合经验模态分解结合麻雀算法优化双向长短期记忆神经网络、集合经验模态分解结合双向长短期记忆神经网络、麻雀算法优化双向长短期记忆神经网络、双向长短期记忆神经网络时间序列预测对比。
2.EEMD-SSA-BiLSTM是一种基于集合经验模态分解(EEMD)、麻雀算法(SSA)和双向长短期记忆神经网络(BiLSTM)的时间序列预测方法;
首先,使用EEMD方法对原始时间序列进行分解,得到多个固有模态函数(IMF)。然后,使用SSA算法对每个IMF进行优化,得到最优的模型参数。最后,将所有IMF的预测结果相加得到最终的预测结果。.EEMD-SSA-BiLSTM方法的优点是能够充分挖掘时间序列的非线性和非平稳特征,并且能够自适应地对每个IMF进行优化,提高了预测的准确性和鲁棒性,可以应用于各种时间序列预测问题,例如股票价格预测、气象数据预测、交通流量预测等。
3.运行环境Matlab2018b及以上,运行每个子文件夹的main即可,excel数据,方便替换;

程序设计

  • 完整程序和数据下载方式:私信博主回复Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比
%% 采用ssa优化
[x ,fit_gen,process]=ssaforlstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
%初始化种群
for i = 1 : popfor j=1:dimif j==1%除了学习率 其他的都是整数x( i, j ) = (ub(j)-lb(j))*rand+lb(j);elsex( i, j ) = round((ub(j)-lb(j))*rand+lb(j));endendfit( i )=fitness(x(i,:),P_train,T_train,P_test,T_test);
end
pFit = fit;
pX = x;
fMin=fit(1);
bestX = x( i, : );for t = 1 : M[ ~, sortIndex ] = sort( pFit );% Sort.从小到大[fmax,B]=max( pFit );worse= x(B,:);r2=rand(1);%%%%%%%%%%%%%5%%%%%%这一部位为发现者(探索者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%if(r2<0.8)%预警值较小,说明没有捕食者出现for i = 1 : pNum  %r2小于0.8的发现者的改变(1-20% Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endelse   %预警值较大,说明有捕食者出现威胁到了种群的安全,需要去其它地方觅食for i = 1 : pNum   %r2大于0.8的发现者的改变x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endend[ ~, bestII ] = min( fit );bestXX = x( bestII, : );%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop     %剩下20-100的个体的变换                % Equation (4)%         i%         sortIndex( i )A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1,dim).*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);endx( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%判断边界是否超出fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)b=sortIndex(c(1:pop));for j =  1  : length(b)      % Equation (5)if( pFit( sortIndex( b(j) ) )>(fMin) ) %处于种群外围的麻雀的位置改变x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else%处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit(  sortIndex( b(j)  ) )=fitness(x(sortIndex( b(j) ),:),P_train,T_train,P_test,T_test);end

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502

相关文章:

时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比

时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比 目录 时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现EEMD-SSA-BiLSTM、…...

Android14之解决Pixel手机联网出现感叹号(一百八十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…...

Vmware虚拟机问题解决方案 运行虚拟机系统蓝屏 运行虚拟机时报错VT-x

1. 运行虚拟机系统蓝屏 可能的原因有两个: 1). 虚拟机所在磁盘的空间不足 ; -------> 清理磁盘空间 。 2). 操作系统版本高, 需要适配新版本的Vmware ; ------> 卸载Vmware15版本, 安装Vmware16版本 。 2. 卸载Vmware步骤 1). 卸载已经安装的VMware 弹出确认框, 点击…...

uni-app中轮播图实现大图预览

参考效果 当轮播图滑动切换的时候更新自定义下标&#xff0c;当图片被点击的时候大图预览。 参考代码 商品详情页轮播图交互 <script setup lang"ts"> // 轮播图变化时 const currentIndex ref(0) const onChange: UniHelper.SwiperOnChange (ev) > …...

了解什么是UV纹理?

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 什么是UV&#xff1f; UV 是与几何图形的顶点信息相对应的二维纹理坐…...

【蓝桥备赛】wzy的数组Ⅱ——简单莫队问题

题目链接 wzy的数组Ⅱ 个人思路 本题需要统计区间范围内 数值为 x 在区间出现次数也为 x 的数的个数。区间询问 多次询问&#xff0c;我们选择 莫队。 将多次询问按照区间边界进行排序&#xff0c;每一次区间的移动&#xff0c;先去判断当前区间指针所指向的数是否符合题目…...

学习Qt笔记

前言&#xff1a; 学习笔记的内容来自B站up主阿西拜编程 《Qt6 C开发指南 》2023&#xff08;上册&#xff0c;完整版&#xff09;_哔哩哔哩_bilibili《Qt6 C开发指南 》2023&#xff08;上册&#xff0c;完整版&#xff09;共计84条视频&#xff0c;包括&#xff1a;00书籍介…...

pymssql 报错误解决办法:20002, severity 9

错误 解决办法 python3.6&#xff0c;安装pymssql低版本&#xff08;pymssql-2.1.5-cp36-cp36m-win32.whl&#xff09;...

Web缓存代理

目录 一.Web缓存代理 配置Nginx 缓存代理&#xff1a; 修改web服务器的配置文件&#xff1a; 修改192.168.233.10代理服务器的配置文件&#xff1a; 访问页面看看&#xff1a; 对于一些实时性要求非常高的页面或数据来说&#xff0c;就不应该去设置缓存&#xff0c;下面来…...

Rust-模式解构

match 首先&#xff0c;我们看看使用match的最简单的示例&#xff1a; exhaustive 有些时候我们不想把每种情况一一列出&#xff0c;可以用一个下划线来表达“除了列出来的那些之外的其他情况”&#xff1a; 下划线 下划线还能用在模式匹配的各种地方&#xff0c;用来表示…...

C#基于ScottPlot进行可视化

前言 上一篇文章跟大家分享了用NumSharp实现简单的线性回归&#xff0c;但是没有进行可视化&#xff0c;可能对拟合的过程没有直观的感受&#xff0c;因此今天跟大家介绍一下使用C#基于Scottplot进行可视化&#xff0c;当然Python的代码&#xff0c;我也会同步进行可视化。 P…...

基于JAVA+ssm开发的在线报名系统设计与实现【附源码】

基于JAVAssm开发的在线报名系统设计与实现【附源码】 &#x1f345; 作者主页 央顺技术团队 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; &#x1f345; 查看下方微信号获取联系方式 承接各种定制系统 …...

蓝桥——第 3 场 小白入门赛(A-D)

文章目录 一、题目A.召唤神坤基本思路&#xff1a;代码 B.聪明的交换策略基本思路&#xff1a;代码 C.怪兽突击基本思路&#xff1a;代码 D.蓝桥快打基本思路代码 一、题目 A.召唤神坤 基本思路&#xff1a; 贪心&#xff0c; 使结果最大&#xff0c;希望两边w[i],w[k]是较大…...

Java项目:06 Springboot的进销存管理系统

作者主页&#xff1a;舒克日记 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 进销存管理系统 介绍 进销存系统是为了对企业生产经营中进货、出货、批发销售、付款等全程进行&#xff08;从接获订单合同开 始&#xff0c;进入物料采购、入…...

数据结构与算法之美学习笔记:47 | 向量空间:如何实现一个简单的音乐推荐系统?

这里写自定义目录标题 前言算法解析总结引申 前言 本节课程思维导图&#xff1a; 很多人都喜爱听歌&#xff0c;以前我们用 MP3 听歌&#xff0c;现在直接通过音乐 App 在线就能听歌。而且&#xff0c;各种音乐 App 的功能越来越强大&#xff0c;不仅可以自己选歌听&#xff0…...

5《Linux》

文章目录 查看端口号查看进程号查看IP查看与某台机器连接情况 Linux查看日志的命令&#xff1f;head [-n 行数参数】tail [-n 行数参数】cat [-n 行号展示】tac [-n 行号展示】 Linux操作文本-三剑客grep-擅长过滤正则过滤sed-擅长取行awk-擅长取列 Linux性能监控的命令&#x…...

go-carbon v2.3.5 发布,轻量级、语义化、对开发者友好的 golang 时间处理库

carbon 是一个轻量级、语义化、对开发者友好的 golang 时间处理库&#xff0c;支持链式调用。 目前已被 awesome-go 收录&#xff0c;如果您觉得不错&#xff0c;请给个 star 吧 github.com/golang-module/carbon gitee.com/golang-module/carbon 安装使用 Golang 版本大于…...

VQ-VAE(Neural Discrete Representation Learning)论文解读及实现

pytorch 实现git地址 论文地址&#xff1a;Neural Discrete Representation Learning 1 论文核心知识点 encoder 将图片通过encoder得到图片点表征 如输入shape [32,3,32,32] 通过encoder后输出 [32,64,8,8] (其中64位输出维度) 量化码本 先随机构建一个码本&#xff0c;维度…...

OpenAI的ChatGPT:引领人工智能交流的未来

如果您在使用ChatGPT工具的过程中感到迷茫&#xff0c;别担心&#xff0c;我在这里提供帮助。无论您是初次接触ChatGPT plus&#xff0c;还是在注册、操作过程中遇到难题&#xff0c;我都将为您提供一对一的指导和支持。(qq:1371410959) 一、ChatGPT简介 OpenAI的ChatGPT是一…...

es集群安装及优化

es主节点 192.168.23.100 es节点 192.168.23.101 192.168.23.102 1.安装主节点 1.去官网下载es的yum包 官网下载地址 https://www.elastic.co/cn/downloads/elasticsearch 根据自己的需要下载对应的包 2.下载好之后把所有的包都传到从节点上&#xff0c;安装 [rootlocalho…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...