时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比
时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比
目录
- 时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
1.Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比,集合经验模态分解结合麻雀算法优化双向长短期记忆神经网络、集合经验模态分解结合双向长短期记忆神经网络、麻雀算法优化双向长短期记忆神经网络、双向长短期记忆神经网络时间序列预测对比。
2.EEMD-SSA-BiLSTM是一种基于集合经验模态分解(EEMD)、麻雀算法(SSA)和双向长短期记忆神经网络(BiLSTM)的时间序列预测方法;
首先,使用EEMD方法对原始时间序列进行分解,得到多个固有模态函数(IMF)。然后,使用SSA算法对每个IMF进行优化,得到最优的模型参数。最后,将所有IMF的预测结果相加得到最终的预测结果。.EEMD-SSA-BiLSTM方法的优点是能够充分挖掘时间序列的非线性和非平稳特征,并且能够自适应地对每个IMF进行优化,提高了预测的准确性和鲁棒性,可以应用于各种时间序列预测问题,例如股票价格预测、气象数据预测、交通流量预测等。
3.运行环境Matlab2018b及以上,运行每个子文件夹的main即可,excel数据,方便替换;
程序设计
- 完整程序和数据下载方式:私信博主回复Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比。
%% 采用ssa优化
[x ,fit_gen,process]=ssaforlstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
%初始化种群
for i = 1 : popfor j=1:dimif j==1%除了学习率 其他的都是整数x( i, j ) = (ub(j)-lb(j))*rand+lb(j);elsex( i, j ) = round((ub(j)-lb(j))*rand+lb(j));endendfit( i )=fitness(x(i,:),P_train,T_train,P_test,T_test);
end
pFit = fit;
pX = x;
fMin=fit(1);
bestX = x( i, : );for t = 1 : M[ ~, sortIndex ] = sort( pFit );% Sort.从小到大[fmax,B]=max( pFit );worse= x(B,:);r2=rand(1);%%%%%%%%%%%%%5%%%%%%这一部位为发现者(探索者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%if(r2<0.8)%预警值较小,说明没有捕食者出现for i = 1 : pNum %r2小于0.8的发现者的改变(1-20) % Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endelse %预警值较大,说明有捕食者出现威胁到了种群的安全,需要去其它地方觅食for i = 1 : pNum %r2大于0.8的发现者的改变x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endend[ ~, bestII ] = min( fit );bestXX = x( bestII, : );%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop %剩下20-100的个体的变换 % Equation (4)% i% sortIndex( i )A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1,dim).*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);endx( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%判断边界是否超出fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)b=sortIndex(c(1:pop));for j = 1 : length(b) % Equation (5)if( pFit( sortIndex( b(j) ) )>(fMin) ) %处于种群外围的麻雀的位置改变x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else%处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit( sortIndex( b(j) ) )=fitness(x(sortIndex( b(j) ),:),P_train,T_train,P_test,T_test);end
参考资料
[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502
相关文章:

时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时序预测对比
时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比 目录 时序预测 | Matlab实现EEMD-SSA-BiLSTM、EEMD-BiLSTM、SSA-BiLSTM、BiLSTM时间序列预测对比预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现EEMD-SSA-BiLSTM、…...

Android14之解决Pixel手机联网出现感叹号(一百八十)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...

Vmware虚拟机问题解决方案 运行虚拟机系统蓝屏 运行虚拟机时报错VT-x
1. 运行虚拟机系统蓝屏 可能的原因有两个: 1). 虚拟机所在磁盘的空间不足 ; -------> 清理磁盘空间 。 2). 操作系统版本高, 需要适配新版本的Vmware ; ------> 卸载Vmware15版本, 安装Vmware16版本 。 2. 卸载Vmware步骤 1). 卸载已经安装的VMware 弹出确认框, 点击…...

uni-app中轮播图实现大图预览
参考效果 当轮播图滑动切换的时候更新自定义下标,当图片被点击的时候大图预览。 参考代码 商品详情页轮播图交互 <script setup lang"ts"> // 轮播图变化时 const currentIndex ref(0) const onChange: UniHelper.SwiperOnChange (ev) > …...

了解什么是UV纹理?
在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 什么是UV? UV 是与几何图形的顶点信息相对应的二维纹理坐…...
【蓝桥备赛】wzy的数组Ⅱ——简单莫队问题
题目链接 wzy的数组Ⅱ 个人思路 本题需要统计区间范围内 数值为 x 在区间出现次数也为 x 的数的个数。区间询问 多次询问,我们选择 莫队。 将多次询问按照区间边界进行排序,每一次区间的移动,先去判断当前区间指针所指向的数是否符合题目…...

学习Qt笔记
前言: 学习笔记的内容来自B站up主阿西拜编程 《Qt6 C开发指南 》2023(上册,完整版)_哔哩哔哩_bilibili《Qt6 C开发指南 》2023(上册,完整版)共计84条视频,包括:00书籍介…...

pymssql 报错误解决办法:20002, severity 9
错误 解决办法 python3.6,安装pymssql低版本(pymssql-2.1.5-cp36-cp36m-win32.whl)...

Web缓存代理
目录 一.Web缓存代理 配置Nginx 缓存代理: 修改web服务器的配置文件: 修改192.168.233.10代理服务器的配置文件: 访问页面看看: 对于一些实时性要求非常高的页面或数据来说,就不应该去设置缓存,下面来…...

Rust-模式解构
match 首先,我们看看使用match的最简单的示例: exhaustive 有些时候我们不想把每种情况一一列出,可以用一个下划线来表达“除了列出来的那些之外的其他情况”: 下划线 下划线还能用在模式匹配的各种地方,用来表示…...

C#基于ScottPlot进行可视化
前言 上一篇文章跟大家分享了用NumSharp实现简单的线性回归,但是没有进行可视化,可能对拟合的过程没有直观的感受,因此今天跟大家介绍一下使用C#基于Scottplot进行可视化,当然Python的代码,我也会同步进行可视化。 P…...

基于JAVA+ssm开发的在线报名系统设计与实现【附源码】
基于JAVAssm开发的在线报名系统设计与实现【附源码】 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定制系统 …...
蓝桥——第 3 场 小白入门赛(A-D)
文章目录 一、题目A.召唤神坤基本思路:代码 B.聪明的交换策略基本思路:代码 C.怪兽突击基本思路:代码 D.蓝桥快打基本思路代码 一、题目 A.召唤神坤 基本思路: 贪心, 使结果最大,希望两边w[i],w[k]是较大…...

Java项目:06 Springboot的进销存管理系统
作者主页:舒克日记 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 进销存管理系统 介绍 进销存系统是为了对企业生产经营中进货、出货、批发销售、付款等全程进行(从接获订单合同开 始,进入物料采购、入…...

数据结构与算法之美学习笔记:47 | 向量空间:如何实现一个简单的音乐推荐系统?
这里写自定义目录标题 前言算法解析总结引申 前言 本节课程思维导图: 很多人都喜爱听歌,以前我们用 MP3 听歌,现在直接通过音乐 App 在线就能听歌。而且,各种音乐 App 的功能越来越强大,不仅可以自己选歌听࿰…...
5《Linux》
文章目录 查看端口号查看进程号查看IP查看与某台机器连接情况 Linux查看日志的命令?head [-n 行数参数】tail [-n 行数参数】cat [-n 行号展示】tac [-n 行号展示】 Linux操作文本-三剑客grep-擅长过滤正则过滤sed-擅长取行awk-擅长取列 Linux性能监控的命令&#x…...
go-carbon v2.3.5 发布,轻量级、语义化、对开发者友好的 golang 时间处理库
carbon 是一个轻量级、语义化、对开发者友好的 golang 时间处理库,支持链式调用。 目前已被 awesome-go 收录,如果您觉得不错,请给个 star 吧 github.com/golang-module/carbon gitee.com/golang-module/carbon 安装使用 Golang 版本大于…...

VQ-VAE(Neural Discrete Representation Learning)论文解读及实现
pytorch 实现git地址 论文地址:Neural Discrete Representation Learning 1 论文核心知识点 encoder 将图片通过encoder得到图片点表征 如输入shape [32,3,32,32] 通过encoder后输出 [32,64,8,8] (其中64位输出维度) 量化码本 先随机构建一个码本,维度…...
OpenAI的ChatGPT:引领人工智能交流的未来
如果您在使用ChatGPT工具的过程中感到迷茫,别担心,我在这里提供帮助。无论您是初次接触ChatGPT plus,还是在注册、操作过程中遇到难题,我都将为您提供一对一的指导和支持。(qq:1371410959) 一、ChatGPT简介 OpenAI的ChatGPT是一…...

es集群安装及优化
es主节点 192.168.23.100 es节点 192.168.23.101 192.168.23.102 1.安装主节点 1.去官网下载es的yum包 官网下载地址 https://www.elastic.co/cn/downloads/elasticsearch 根据自己的需要下载对应的包 2.下载好之后把所有的包都传到从节点上,安装 [rootlocalho…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...