当前位置: 首页 > news >正文

GPT编程:运行第一个聊天程序

环境搭建

很多机器学习框架和类库都是使用Python编写的,OpenAI提供的很多例子也是Python编写的,所以为了方便学习,我们这个教程也使用Python。

Python环境搭建

Python环境搭建有很多种方法,我们这里需要使用 Python 3.10 的环境,如果你已经具备或者自己很清楚怎么搭建,请跳过这个小节。

Anaconda安装

Anaconda 可以简单理解为一个软件包管理器,通过它我们可以方便的管理Python运行环境。

Anaconda 的官方下载地址是:https://www.anaconda.com/download,页面如下图所示:

请注意选择你使用的操作系统,整个安装包有800多M,下载时间取决于你的网路。

Anaconda 的安装比较简单,但是安装中间还需要下载很多程序,所以需要的时间可能会久一点;另外全部安装完毕后,可能会占用5G多的硬盘空间,需要提前预留好。

Anaconda 集成了一些方便的工具,安装完成后,我们可以使用 Anaconda Navigator 来启动它们。在Windows系统下,我们可以在开始菜单中找到这个 Anaconda Navigator,就是下面图片中的这个。

JupyterLab

启动 Anaconda Navigator 后,在右边的应用列表中找到 JupyterLab。

JupyterLab 是一个Web的交互式计算窗口,能在网页中运行Python程序,可以省掉很多麻烦。

启动后,窗口界面如下所示。左边是当前用户的根目录,右边有一些功能入口,我们先不管。

我们在左侧根目录下点击右键创建一个文件夹:gptdemo,名字可以随便起,后边我们的程序都放到这里边。

然后我们双击进入 gptdemo,再点击右键创建一个 Notebook,Notebook 可以记录文字、编写代码并执行。

在左侧文件夹中双击新创建的Notebook,它会在右侧编辑区打开,在工具栏的“Cell Type”中选择“Code”,然后点击工具栏前边的加号(+),Notebook中就会自动创建一个代码Cell,这种Cell既可以运行Python代码,也可以执行各种Shell指令。

安装OpenAI包

执行下边的命令,安装openai的python sdk。

pip install --upgrade openai httpx[socks]

这个只需要安装成功一次就行了。

下图是JupyterLab中的命令执行效果演示:

代码演练

下边进入本文的重点,运行一个GPT程序。

在这个程序中,我们还是让 GPT 扮演一个善于出题的小学数学老师。

可以先把下边的代码粘贴到你的开发环境中运行一下,后面我会解释各个参数。

注意替换 api_key,没有的可以去注册一个或者找人购入一个。

from openai import OpenAIclient = OpenAI(api_key='sk-xxx')
stream = client.chat.completions.create(messages=[{"role": "system", "content": "你是一名数学老师,从事小学数学教育30年,精通设计各种数学考试题"},{"role": "user", "content": "你是谁?请以json返回"}],model='gpt-3.5-turbo-1106',max_tokens:1024,#temperature=0.1,top_p=0.3,#frequency_penalty=0.5,presence_penalty=0.2,seed=12345,#stop='30年',response_format={ "type": "json_object" },n=1,stream=True
)for chunk in stream:msg = chunk.choices[0].delta.contentif msg is not None:print(msg, end='')

我们需要先创建一个客户端:client = OpenAI(api_key='sk-xxx'),注意替换其中的 api-key。

然后我们使用 client.chat.completions.create 来创建一个聊天 Completion。Completion这个单词怎么理解呢?这有点类似搜索框中的那种联想输入,我们输入部分字符,它就会生成一组补全的查询词语列表,这个技术叫:Auto Complete。

理解Token

因为很多参数都涉及到Token的概念,所以在开始介绍参数之前,我们先来理解下 Token 这个概念。

在大模型中,模型的输入和输出实际都是Token。Token不是完全对照到单词或者字符的,大模型处理数据时,文本会被切分成单个元素或标记,也就是Token,这些Token可能是单词、字符或单词的一部分。

大模型使用Token而不是直接使用单词或字符的原因主要是效率、灵活性和性能的问题。例如大词汇表会导致模型参数数量剧增,增加内存需求和计算成本,而使用子词可以降低词汇表的大小,特别是含有大量专有名词的语料库,同时子词还可以避免单个字符携带信息可能过少,导致需要处理更长序列才能理解文本的问题。另外子词对于一些语言还具备跨语言表示的能力,子词还可以让模型更好地学习和理解单词的形态变化和复杂的词形构造规则。

比如对于这个句子:I don't like cats.

其拆分后的Token序列可能是:["I", "do", "n't", "like", "cats", "."]

注意,不同的模型可能会采用不同的切分方法。

completion参数

然后我们看下这几个参数:

  • messages:聊天的上下文,里边可以包含多条消息。GPT会针对最后一条消息,结合上下文,生成文本内容。每条消息可以设定role、name、content。
    • role:就是会话中的角色,可以选择:system(系统)、assistant(GPT)、user(用户)
    • name:用来区分同一个角色中的不同人物。
    • content:具体角色发出的消息内容。
  • model:本次会话使用的GPT模型,最新的3.5模型是 gpt-3.5-turbo-1106,训练数据截止2021年9月份,上下文窗口的最大token数为16K;最新的4模型是gpt-4-1106-preview,训练数据截止2023年4月份,上下文窗口的最大token数为128K。
  • max_tokens:本次Completion允许生成的最大token数量,token数量和字符数量实际上不是对等的,不过也可以简单的认为就是字符数量。messages中输入的token数量和生成的token数量不能超过模型上下文窗口的最大token数量。
  • temperature:生成时对token进行采样的温度,取值范围为 0-2 的float,默认值为1。值越小输出越确定,值越大输出越随机,可能会跳出上下文约束,甚至输出不可读的乱七八糟字符。
  • top_p:temperature 的替代方法,称为核采样。取值范围为 0-1 的float,默认值为1。模型考虑具有top_p概率质量的标记的结果,比如 0.1 表示仅考虑概率最大的前10%的token。注意不要同时更改 temperature 和 top_p。
  • frequency_penalty:频率惩罚,用于降低生成重复token的可能性,它基于相关token出现的频率产生影响。取值范围 -2.0 到 2.0 ,默认值为0。一般限制重复时建议设置为0.1-1,强烈限制重复可设置为2,但是生成的质量可能会比较低,负值可用于增加重复。
  • presence_penalty:存在惩罚,也是用于降低生成重复token的可能性,和频率惩罚相比,它跟踪的是相关token有没有出现过至少一次。取值范围 -2.0 到 2.0,默认值为0。一般限制重复时建议设置为0.1-1,强烈限制重复可设置为2,但是生成的质量可能会比较低,负值可用于增加重复。
  • seed:这个参数是为了尽可能的提高输出的确定性。使用相同的种子和相同的其它参数,会尽可能的输出相同的结果。
  • stop:GPT生成文字时,遇到这些字符会停止继续生成。最多4个字符。
  • response_format:生成文本的格式。虽然我们也可以在聊天内容中直接要求以某种格式返回,但是这是没有保障的,也可能返回别的格式,但是如果再加上这个参数,就可以确保生成内容的格式了。
  • n:一次返回几条结果,默认为1。使用时建议设置 stream=false,可以从 choices 中获取多条结果。
  • stream:流式输出与否,一般都采用流式输出,看着比较像真人说话。

看下这个运行效果吧:


以上就是本文的主要内容,GPT编程是不是挺简单的?!

后续我还会继续分享图片、插件、语音等API的使用方法。

关注萤火架构,加速技术提升!

相关文章:

GPT编程:运行第一个聊天程序

环境搭建 很多机器学习框架和类库都是使用Python编写的,OpenAI提供的很多例子也是Python编写的,所以为了方便学习,我们这个教程也使用Python。 Python环境搭建 Python环境搭建有很多种方法,我们这里需要使用 Python 3.10 的环境…...

NLP论文阅读记录 - WOS | ROUGE-SEM:使用ROUGE结合语义更好地评估摘要

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.相关工作三.本文方法四 实验效果4.1数据集4.2 对比模型4.3实施细节4.4评估指标4.5 实验结果4.6 细粒度分析 五 总结 前言 ROUGE-SEM: Better evaluation of summarization using ROUGE combin…...

vscode 创建文件自动添加注释信息

随机记录 目录 1. 背景介绍 2. "Docstring Generator"扩展 2.1 安装 2.2 设置注释信息 3. 自动配置py 文件头注释 1. 背景介绍 在VS Code中,您可以使用扩展来为新创建的Python文件自动添加头部注释信息。有几个常用的扩展可以实现此功能&#xff0…...

JVM内存区域详解,一文弄懂JVM内存【内存分布、回收算法、垃圾回收器】

视频讲解地址 学习文档 一、内存区域 区域描述线程私有如何溢出程序计数器为了线程切换后能恢复到正确的执行位置,每个线程都要有一个独立的程序计数器。✅唯一一个不会内存溢出的地方虚拟机栈1. 每个方法执行的时候,Java虚拟机都会同步创建一个栈帧用于…...

uniapp搜索附近蓝牙信标(iBeacon)

一、 iBeacon介绍 iBeacon是苹果在2013年WWDC上推出一项基于蓝牙4.0(Bluetooth LE | BLE | Bluetooth Smart)的精准微定位技术,在iPhone 4S后支持。当你的手持设备靠近一个Beacon基站时,设备就能够感应到Beacon信号,范…...

Redis 常见数据结构以及使用场景分析

Java面试题目录 Redis 常见数据类型以及使用场景分析 Redis中有string、list、hash、set、sorted set、bitmap这6种数据类型。 string可以用来做缓存,分布式锁,计数器等。 list可以实现消息队列,分页查询等。 hash适合存储对象结构。 set 可…...

LMDeploy 大模型量化部署实践

LMDeploy 大模型量化部署实践 大模型部署背景模型部署定义产品形态计算设备 大模型特点大模型挑战大模型部署方案 LMDeploy简介推理性能核心功能-量化核心功能-推理引擎TurboMind核心功能 推理服务 api-server 案例(安装、部署、量化) 大模型部署背景 模型部署 定义 将训练好…...

15个为你的品牌增加曝光的维基百科推广方法-华媒舍

维基百科是全球最大的免费在线百科全书,拥有庞大的用户群体和高质量的内容。在如今竞争激烈的市场中,利用维基百科推广品牌和增加曝光度已成为许多企业的重要策略。本文将介绍15种方法,帮助你有效地利用维基百科推广品牌,提升曝光…...

启动redis出现Creating Server TCP listening socket 127.0.0.1:6379: bind: No error异常

1.进入redis安装目录,地址栏输入cmd 2.输入命令 redis-server.exe redis.windows.conf redis启动失败 解决,输入命令 #第一步 redis-cli.exe#第二步 shutdown#第三步 exit第四步 redis-server.exe redis.windows.conf 显示以下图标即成功...

响应式编程Reactor优化Callback回调地狱

1. Reactor是什么 Reactor 是一个基于Reactive Streams规范的响应式编程框架。它提供了一组用于构建异步、事件驱动、响应式应用程序的工具和库。Reactor 的核心是 Flux(表示一个包含零到多个元素的异步序列)和 Mono表示一个包含零或一个元素的异步序列…...

React项目实战--------极客园项目PC端

项目介绍:主要将学习到的项目内容进行总结(有需要项目源码的可以私信我) 关于我的项目的配置如下,请注意下载的每个版本不一样,写的api也不一样 一、项目介绍 1.资料 1)短信接收&M端演示&#xff1a…...

Jerry每次能向前或向后走n*n步(始终不能超过初始位置1e5),q(q <= 1e5)次询问,求向前走d最少要几次

题目 思路&#xff1a;因为有走的过程不能超初始位置1e5的限制&#xff0c;所以不能直接用奇数最多两次&#xff0c;4的倍数最多两次的结论。spfa&#xff0c;平方数的dis为1&#xff0c;然后推出其他数的dis #include<bits/stdc.h> using namespace std; #define int …...

【Spring Boot 3】【Flyway】数据库版本管理

【Spring Boot 3】【Flyway】数据库版本管理 背景介绍开发环境开发步骤及源码工程目录结构总结背景 软件开发是一门实践性科学,对大多数人来说,学习一种新技术不是一开始就去深究其原理,而是先从做出一个可工作的DEMO入手。但在我个人学习和工作经历中,每次学习新技术总是…...

蓝桥杯基础数据结构(java版)

引言 数据结构数据结构。所以数据结构是一个抽象的概念。其目的是为了更好的组织数据方便数据存储。下面我们来看一些简单的数据储存方式 输入和输出 这里先介绍java的输入和输出。简单引入&#xff0c;不过多详细介绍&#xff0c;等我单一写一篇的时候这里会挂上链接 简单的…...

39 C++ 模版中的参数如果 是 vector,list等集合类型如何处理呢?

在前面写的例子中&#xff0c;模版参数一般都是 int&#xff0c;或者一个类Teacher&#xff0c;假设我们现在有个需求&#xff1a;模版的参数要是vector&#xff0c;list这种结合类型应该怎么写呢&#xff1f; //当模版中的类型是 vector &#xff0c;list 等集合类型的时候的处…...

5.Pytorch模型单机多GPU训练原理与实现

文章目录 Pytorch的单机多GPU训练1)多GPU训练介绍2)pytorch中使用单机多GPU训练DistributedDataParallel(DDP)相关变量及含义a)初始化b)数据准备c)模型准备d)清理e)运行 3)使用DistributedDataParallel训练模型的一个简单实例 欢迎访问个人网络日志&#x1f339;&#x1f339;知…...

想成为一名C++开发工程师,需要具备哪些条件?

C语言是一门面向过程的、抽象化的通用程序设计语言&#xff0c;广泛应用于底层开发。C语言能以简易的方式编译、处理低级存储器。C语言是仅产生少量的机器语言以及不需要任何运行环境支持便能运行的高效率程序设计语言。尽管C语言提供了许多低级处理的功能&#xff0c;但仍然保…...

Qat++,轻量级开源C++ Web框架

目录 一.简介 二.编译Oat 1.环境 2.编译/安装 三.试用 1.创建一个 CMake 项目 2.自定义客户端请求响应 3.将请求Router到服务器 4.用浏览器验证 一.简介 Oat是一个面向C的现代Web框架 官网地址&#xff1a;https://oatpp.io github地址&#xff1a;https://github.co…...

openssl3.2 - 官方demo学习 - digest - EVP_MD_demo.c

文章目录 openssl3.2 - 官方demo学习 - digest - EVP_MD_demo.c概述笔记END openssl3.2 - 官方demo学习 - digest - EVP_MD_demo.c 概述 使用 SHA3-512 对多个buffer连续进行摘要, 最后得到一个摘要值 笔记 /*! \file EVP_MD_demo.c \note openssl3.2 - 官方demo学习 - dig…...

uniapp 编译后文字乱码的解决方案

问题: 新建的页面中编写代码&#xff0c;其中数字和图片都可以正常显示&#xff0c;只有中文编译后展示乱码 页面展示也是乱码 解决方案: 打开HuilderX编辑器的【文件】- 【以指定编码重新打开】- 【选择UTF-8】 然后重新编译就可以啦~ 希望可以帮到你啊~...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...