当前位置: 首页 > news >正文

奇异值分解在图形压缩中的应用

奇异值分解在图形压缩中的应用


在研究奇异值分解的工程应用之前,我们得明白什么是奇异值?什么是奇异向量?

奇异值与奇异向量

概念:奇异值描述了矩阵在一组特定向量上的行为,奇异向量描述了其最大的作用方向。

奇异值分解(SVD)

矩阵A的分解涉及一个 m × n m \times n m×n的矩阵 Σ \Sigma Σ,其中 Σ \Sigma Σ= [ D 0 0 0 ] \begin{bmatrix} D &0\\0&0\end{bmatrix} [D000],D是一个 r × r r\times r r×r的方阵 ( r ≤ m , r ≤ n ) ( r \leq m , r\leq n) (rm,rn)

定理:设A是秩为 r r r m × n m\times n m×n的矩阵,那么存在一个类似于 Σ \Sigma Σ的矩阵,其中 D D D的对角线元素是 A A A的前 r r r个奇异值, σ 1 ≥ σ 2 ≥ σ 3 ≥ . . . ≥ σ r > 0 \sigma_1 \geq\sigma_2 \geq\sigma_3 \geq... \geq\sigma_r>0 σ1σ2σ3...σr>0并且存在一个 m × m m\times m m×m的正交矩阵 U U U 和一个 n × n n\times n n×n的正交矩阵 V T V^T VT使得 A = U Σ V T A=U\Sigma V^T A=UΣVT

奇异值分解计算过程

我们先假设一个矩阵 A = [ 2 3 0 2 ] A = \begin{bmatrix} 2 & 3 \\ \ 0 & 2\end{bmatrix} A=[2 032]
U = [ u 1 u 2 u 3 . . . ] U=[u_1 u_2 u_3 ...] U=[u1u2u3...] , ∑ = d i a g [ σ 1 σ 2 σ 3 . . . ] \sum = diag[\sigma_1 \sigma_2 \sigma_3 ...] =diag[σ1σ2σ3...] , V = [ v 1 v 2 v 3 . . . ] T V=\begin{bmatrix} v_1 \\ v_2\\ v_3 \\ ...\end{bmatrix}^T V= v1v2v3... T
其中 U U U代表A的正交矩阵; ∑ \sum 代表A的由奇异值组成的左奇异向量矩阵; V V V代表A的右奇异向量矩阵。

求A的 U , ∑ , V U , \sum , V U,,V.

  1. 计算 A T A A^TA ATA
    A T A = [ 2 0 3 2 ] [ 2 3 0 2 ] = [ 13 6 6 4 ] A^TA =\begin{bmatrix} 2&0\\3&2 \end{bmatrix} \begin{bmatrix} 2&3\\0&2\end{bmatrix}= \begin{bmatrix} 13&6\\6&4 \end{bmatrix} ATA=[2302][2032]=[13664]
  2. 计算 A T A A^TA ATA的奇异值 σ \sigma σ
    σ 1 2 σ 2 2 = d e t A T A = 16 σ 1 2 + σ 2 2 = t r A T A = 17 ∴ σ 1 2 = 16 , σ 2 2 = 1 ∴ σ 1 = 4 , σ 2 = 1 ∴ Σ = [ 4 0 0 1 ] \sigma_1^2\sigma_2^2 = det A^TA = 16 \\ \sigma_1^2 + \sigma_2^2 = tr A^TA = 17 \\ \therefore \sigma_1^2 =16, \sigma_2^2= 1\\ \therefore \sigma_1 =4, \sigma_2= 1\\ \therefore \Sigma=\begin{bmatrix} 4&0\\0&1 \end{bmatrix} σ12σ22=detATA=16σ12+σ22=trATA=17σ12=16,σ22=1σ1=4,σ2=1Σ=[4001]
  3. σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2带入 A T A A^TA ATA中求其特征向量
    v 1 = [ 1 5 2 5 ] , v 2 = [ − 2 5 1 5 ] ∴ V = [ 1 5 − 2 5 2 5 1 5 ] \\ v_1= \begin{bmatrix} \frac{1}{\sqrt5} \\\\ \frac{2}{\sqrt5} \end{bmatrix} , v_2= \begin{bmatrix} -\frac{2}{\sqrt5}\\\\\frac{1}{\sqrt5} \end{bmatrix} \\\therefore V= \begin{bmatrix} \frac{1}{\sqrt5}&-\frac{2}{\sqrt5} \\\\ \frac{2}{\sqrt5}&\frac{1}{\sqrt5}\end{bmatrix} v1= 5 15 2 ,v2= 5 25 1 V= 5 15 25 25 1
  4. 构造标准正交向量
    u i = 1 σ i A v i ∴ u 1 = 1 σ 1 A v 1 = 1 4 [ 2 3 0 2 ] [ 1 5 2 5 ] = [ 2 5 1 5 ] ∴ u 2 = 1 σ 2 A v 2 = 1 1 [ 2 3 0 2 ] [ − 2 5 1 5 ] = [ − 1 5 2 5 ] ∴ U = ( u 1 , u 2 ) = [ 2 5 − 1 5 1 5 2 5 ] u_i=\frac{1}{\sigma_i}Av_i \\ \therefore u_1=\frac{1}{\sigma_1}Av_1=\frac{1}{4}\begin{bmatrix} 2&3\\\\0&2\end {bmatrix} \begin{bmatrix} \frac{1}{\sqrt5} \\\\ \frac{2}{\sqrt5} \end{bmatrix} =\begin{bmatrix} \frac{2}{\sqrt5}\\ \\ \frac{1}{\sqrt5} \end {bmatrix} \\ \therefore u_2=\frac{1}{\sigma_2}Av_2=\frac{1}{1}\begin{bmatrix} 2&3\\\\0&2\end {bmatrix} \begin{bmatrix} - \frac{2}{\sqrt5} \\\\ \frac{1}{\sqrt5} \end{bmatrix} =\begin{bmatrix} -\frac{1}{\sqrt5}\\ \\ \frac{2}{\sqrt5} \end {bmatrix} \\ \therefore U=(u_1,u_2)=\begin{bmatrix} \frac{2}{\sqrt5} & -\frac{1}{\sqrt5} \\ \\ \frac{1}{\sqrt5} &\frac{2}{\sqrt5} \end{bmatrix} ui=σi1Aviu1=σ11Av1=41 2032 5 15 2 = 5 25 1 u2=σ21Av2=11 2032 5 25 1 = 5 15 2 U=(u1,u2)= 5 25 15 15 2
  5. 写出表达式
    A = U Σ V T = [ 2 5 − 1 5 1 5 2 5 ] [ 4 0 0 1 ] [ 1 5 2 5 − 2 5 1 5 ] A=U\Sigma V^T=\begin{bmatrix} \frac{2}{\sqrt5} & -\frac{1}{\sqrt5} \\ \\ \frac{1}{\sqrt5} &\frac{2}{\sqrt5} \end{bmatrix} \begin{bmatrix} 4 & 0 \\\\ \ 0 & 1\end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt5}& \frac{2}{\sqrt5}\\\\ -\frac{2}{\sqrt5}&\frac{1}{\sqrt5}\end{bmatrix} A=UΣVT= 5 25 15 15 2 4 001 5 15 25 25 1

利用奇异值分解(SVD)进行图片压缩

首先我们先找一张图片来进行实验。
请添加图片描述

通道分离

对于JPG格式的彩色图片,拥有3个颜色通道,R(红)、G(绿)、B(蓝),那么可以尝试将每个颜色通道进行分离,产生3个形状均为图像高 x 宽 的单通道剧展,即imageR,imageG,imageB。

进行通道分离,将imageArray数组中的每个通道分别单独取出来,得到3个高 × \times × 宽的二维数组。这3个二维数组中每个位置上的取值就是对应像素的某个颜色通道的取值,代码如下:

import numpy as np
from PIL import ImageoriginalImage = Image.open(r'teriri.jpg', 'r')
imageArray = np.array(originalImage)
R = imageArray[:, :, 0]
G = imageArray[:, :, 1]
B = imageArray[:, :, 2]
print(R)
print(G)
print(B)

运行结果如下:

[[207 207 207 … 141 141 141]
[207 207 207 … 141 141 141]
[207 207 207 … 141 141 141]

[246 247 248 … 239 239 239]
[246 247 248 … 239 239 239]
[246 247 248 … 239 239 239]]
[[198 198 198 … 126 126 126]
[198 198 198 … 126 126 126]
[198 198 198 … 126 126 126]

[233 234 235 … 235 235 235]
[233 234 235 … 235 235 235]
[233 234 235 … 235 235 235]]
[[215 215 215 … 149 147 147]
[215 215 215 … 149 147 147]
[215 215 215 … 149 147 147]

[230 231 233 … 203 203 203]
[230 231 233 … 203 203 203]
[230 231 233 … 203 203 203]]

至此,我们成功得到了3个二维ndarray数组,将R、G、B三个通道成功进行了分离。

矩阵压缩

对每个单通道矩阵进行奇异值分解,按照压缩的实际需要取前k个奇异值,进行3个单通道的矩阵的压缩,最后分别形成3个压缩后的矩阵:imageRC,imageGC,imageBC,代码如下:

def imgCompress(channel,percent):U,sigma,V_T = np.linalg.svd(channel)m = U.shape[0]n = V_T.shape[0]reChannel = np.zeros((m,n))for k in range (len(sigma)):reChannel = reChannel + sigma[k] * np.dot(U[:,k].reshape(m,1),V_T[k,:].reshape(1,n))if float(k) / len(sigma) > percent:reChannel[reChannel < 0] = 0reChannel[reChannel > 255] = 255breakreturn np.rint(reChannel).astype("unit8")

图像重建

将经过奇异值分解处理的3个单通道矩阵合并,从而重构出压缩后的彩色图像。

    for p in [0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:#p表示取所有奇异值的前多少比例reR = imgCompress(R,p)reG = imgCompress(G,p)reB = imgCompress(B,p)reI = np.stack((reR,reG,reB),2)Image.fromarray(reI).save("{}".format(p)+"img.png")

整体运行结果如下:

比例为0.001至0.04
在这里插入图片描述>0.05至0.5
在这里插入图片描述
0.6至原图
在这里插入图片描述
总结:

  1. 取前0.1%奇异值重建的图像是一个非常模糊的,基本只能看到大体轮廓。
  2. 取前1%奇异值重建的图像就可以看到一个比较清晰的图片了。
  3. 随着比例的提升,图片越来越清晰,到30%的时候就基本与原图一致了。

相关文章:

奇异值分解在图形压缩中的应用

奇异值分解在图形压缩中的应用 在研究奇异值分解的工程应用之前&#xff0c;我们得明白什么是奇异值&#xff1f;什么是奇异向量&#xff1f; 奇异值与奇异向量 概念&#xff1a;奇异值描述了矩阵在一组特定向量上的行为&#xff0c;奇异向量描述了其最大的作用方向。 奇异值…...

C++深入学习之STL:1、容器部分

标准模板库STL的组成 主要由六大基本组件组成&#xff1a;容器、迭代器、算法、适配器、函数对象(仿函数)以及空间配置器。 容器&#xff1a;就是用来存数据的&#xff0c;也称为数据结构。 本文要详述的是容器主要如下&#xff1a; 序列式容器&#xff1a;vector、list 关联…...

Javascript——vue下载blob文档流

<el-table-column label"操作" fixed"right" width"150" showOverflowTooltip><template slot-scope"scope"><el-button type"text" v-has"stbsd-gjcx-down" class"edit-button" click&…...

C# 的SequenceEqual

SequenceEqual 是 LINQ 扩展方法之一&#xff0c;用于比较两个序列&#xff08;如数组、列表等&#xff09;的元素是否相等。 该方法的详细定义如下&#xff1a; public static bool SequenceEqual<TSource>(this IEnumerable<TSource> first, IEnumerable<TS…...

第九部分 使用函数 (一)

目录 一、简介 二、函数的调用语法 一、简介 在 Makefile 中可以使用函数来处理变量&#xff0c;从而让我们的命令或是规则更为的灵活和具 有智能。make 所支持的函数也不算很多&#xff0c;不过已经足够我们的操作了。函数调用后&#xff0c;函数 的返回值可以当做变量来使用…...

【JUC进阶】14. TransmittableThreadLocal

目录 1、前言 2、TransmittableThreadLocal 2.1、使用场景 2.2、基本使用 3、实现原理 4、小结 1、前言 书接上回《【JUC进阶】13. InheritableThreadLocal》&#xff0c;提到了InheritableThreadLocal虽然能进行父子线程的值传递&#xff0c;但是如果在线程池中&#x…...

基于C++的ORM框架sqlpp11入门介绍(附MySQL运行实例)

基本介绍 sqlpp11 是 C 的类型安全的 SQL 模版库。 Sqlpp11的官方下载地址是&#xff0c; GitHub - rbock/sqlpp11: A type safe SQL template library for C 在这里&#xff0c;可以找到官方的详细介绍文档&#xff0c; https://github.com/rbock/sqlpp11/tree/main/docs…...

对写文章的想法

一些思考 思考初心现在错觉想说的话 最后 思考 在CSDN里面写文章已经快半年了啊&#xff0c;虽然更得不多&#xff0c;但每一篇都花费很多时间&#xff0c;写的时候能帮自己查漏补缺&#xff0c;这边找找资料补充一下&#xff0c;都能去拓展自己的知识面&#xff0c;让自己的文…...

Istio安装和基础原理

1、Istio简介 Istio 是一个开源服务网格&#xff0c;它透明地分层到现有的分布式应用程序上。 Istio 强大的特性提供了一种统一和更有效的方式来保护、连接和监视服务。 Istio 是实现负载平衡、服务到服务身份验证和监视的路径——只需要很少或不需要更改服务代码。它强大的控…...

C++核心编程——基于多态的企业职工系统

本专栏记录C学习过程包括C基础以及数据结构和算法&#xff0c;其中第一部分计划时间一个月&#xff0c;主要跟着黑马视频教程&#xff0c;学习路线如下&#xff0c;不定时更新&#xff0c;欢迎关注。 当前章节处于&#xff1a; ---------第1阶段-C基础入门 ---------第2阶段实战…...

Nginx服务安装

Nginx(发音为[engine x]&#xff09;专为性能优化而开发&#xff0c;其最知名的优点是它的稳定性和低系统资源消 耗&#xff0c;以及对HTTP并发连接的高处理能力&#xff08;单台物理服务器可支持30000~50000个并发请求&#xff09;。正因 为如此&#xff0c;大量提供社交网络、…...

微信小程序canvas画布实现矩形元素自由缩放、移动功能

一、获取画布信息并绘制背景 .whml <canvas class="canvas" type="2d" id="myCanvas" bindtouchstart="get_rect_touch_position" bindtouchmove="move_or_scale" bind:tap="finish_edit_check"/> 定义c…...

一文搞懂 Python 3 中的数据类型

介绍 在 Python 中&#xff0c;与所有编程语言一样&#xff0c;数据类型用于对一种特定类型的数据进行分类。这很重要&#xff0c;因为您使用的特定数据类型将决定您可以为其分配哪些值以及您可以对其执行哪些操作&#xff08;包括可以对其执行哪些操作&#xff09;。 1. 数字…...

学习笔记之——3D Gaussian Splatting源码解读

之前博客对3DGS进行了学习与调研 学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研-CSDN博客文章浏览阅读450次。论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作&#xff0c;它的特点在于重建质量高的情况下还能接入传统光栅化&#xff0c;优…...

Flink standalone集群部署配置

文章目录 简介软件依赖部署方案二、安装1.下载并解压2.ssh免密登录3.修改配置文件3.启动集群4.访问 Web UI 简介 Flink独立模式&#xff08;Standalone&#xff09;是部署 Flink 最基本也是最简单的方式&#xff1a;所需要的所有 Flink 组件&#xff0c; 都只是操作系统上运行…...

Python: + 运算符、append() 方法和 extend()方法的区别和用法

在Python中&#xff0c;有几种常见的方式可以向列表中添加元素&#xff0c;其中包括使用 运算符、append() 方法和 extend() 方法。 使用 运算符&#xff1a; 运算符用于合并两个列表。 通过创建一个新列表&#xff0c;包含两个被合并的列表的元素。不会修改原始列表&…...

【MySQL】mysql集群

文章目录 一、mysql日志错误日志查询日志二进制日志慢查询日志redo log和undo log 二、mysql集群主从复制原理介绍配置命令 读写分离原理介绍配置命令 三、mysql分库分表垂直拆分水平拆分 一、mysql日志 MySQL日志 是记录 MySQL 数据库系统运行过程中不同事件和操作的信息的文件…...

zabbix监控windows主机

下载安装zabbix agent安装包 Zabbix官网下载地址: https://www.zabbix.com/cn/download_agents?version5.0LTS&release5.0.40&osWindows&os_versionAny&hardwareamd64&encryptionOpenSSL&packagingMSI&show_legacy0 这里使用zabbix agent2 安装 …...

单例模式的八种写法、单例和并发的关系

文章目录 1.单例模式的作用2.单例模式的适用场景3.饿汉式静态常量&#xff08;可用&#xff09;静态代码块&#xff08;可用&#xff09; 4.懒汉式线程不安全&#xff08;不可用&#xff09;同步方法&#xff08;线程安全&#xff0c;但不推荐用&#xff09;同步代码块&#xf…...

基于实时Linux+FPGA实现NI CompactRIO系统详解

利用集成的软件工具链&#xff0c;结合信号调理I/O模块&#xff0c;轻松构建和部署实时应用程序。 什么是CompactRIO&#xff1f; CompactRIO系统提供了高处理性能、传感器专用I/O和紧密集成的软件工具&#xff0c;使其成为工业物联网、监测和控制应用的理想之选。实时处理器提…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...

深度解析云存储:概念、架构与应用实践

在数据爆炸式增长的时代&#xff0c;传统本地存储因容量限制、管理复杂等问题&#xff0c;已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性&#xff0c;成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理&#xff0c;云存储正重塑数据存储与…...

MeanFlow:何凯明新作,单步去噪图像生成新SOTA

1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架&#xff0c;旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念&#xff0c;这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换&#xff0c;显…...