大模型PEFT技术原理(一):BitFit、Prefix Tuning、Prompt Tuning
随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning),即固定住Pretrain Language model(PLM)的大部分参数,仅调整模型的一小部分参数来达到与全部参数的微调接近的效果(调整的可以是模型自有的参数,也可以是额外加入的一些参数)。本文将介绍一些常见的参数高效微调技术,比如:BitFit、Prefix Tuning、Prompt Tuning、P-Tuning、P-Tuning v2、Adapter Tuning及其变体、LoRA、AdaLoRA、QLoRA、MAM Adapter、UniPELT等。
1、BitFit
论文地址:https://aclanthology.org/2022.acl-short.1.pdf
代码地址:https://github.com/benzakenelad/BitFit
BitFIt只对模型的bias进行微调。在小规模-中等规模的训练数据上,BitFit的性能与全量微调的性能相当,甚至有可能超过,在大规模训练数据上,与其他fine-tuning方法也差不多。在大模型中bias存在Q,K,V,MLP,LayerNorm中,具体公式如下:



在Bert-Base/Bert-Large这种模型里,bias参数仅占模型全部参数量的0.08%~0.09%。但是通过在Bert-Large模型上基于GLUE数据集进行了 BitFit、Adapter和Diff-Pruning的效果对比发现,BitFit在参数量远小于Adapter、Diff-Pruning的情况下,效果与Adapter、Diff-Pruning想当,甚至在某些任务上略优于Adapter、Diff-Pruning。

通过Bitfit训练前后的参数对比,发现很多bias参数没有太多变化,例如跟计算key所涉及到的bias参数。发现其中计算query与中间MLP层的bias(将特征维度从N放大到4N的FFN层——将输入从768d转化为到3072d)变化最为明显,只更新这两类bias参数也能达到不错的效果,反之,固定其中任何一者,模型的效果都有较大损失。

作者给出了Hugging Face与BitFit参数的映射关系表,如下所示:

2、Prefix Tuning
论文地址:https://arxiv.org/pdf/2101.00190.pdf
代码地址:https://github.com/XiangLi1999/PrefixTuning
prefix-tuning方法是一个轻量级的fine-tuning方法用于自然语言处理的生成任务。该方法可以保持预训练语言模型参数固定(frozen),而只需要在task-specific vector(称为prefix)上进行优化。即只需要少量(约0.1%)的优化参数,即可以在量和小量数据上达到不错的效果。
针对不同的模型结构,需要构造不同的Prefix。
-
针对自回归架构模型:在句子前面添加前缀,得到
z = [PREFIX; x; y],合适的上文能够在固定 LM 的情况下去引导生成下文(比如:GPT3的上下文学习)。 -
针对编码器-解码器架构模型:Encoder和Decoder都增加了前缀,得到
z = [PREFIX1; x; PREFIX2; y]。Encoder端增加前缀是为了引导输入部分的编码,Decoder 端增加前缀是为了引导后续token的生成。

如上图所示, 表示prefix indices序列,
表示prefix的长度。Prefix-tuning通过初始化可训练矩阵
(维度为
)来存储prefix参数:
training objective与Fine-tuning相同,但语言模型的参数 固定,仅仅prefix参数
是可训练参数。因此
是可训练的
的函数,当
时,
由
直接复制得到,对于
, 由于prefix activations始终在left context因此可以影响到
。
在实验上,直接更新 的参数会导致优化的不稳定以及表现上的极具下降。因此通过使用较小的矩阵
通过大型前馈神经网络(
)来reparametrize矩阵
:
其中, 和
在相同的行维度(也就是相同的prefix length), 但不同的列维度。当训练完成后,reparametrization参数被丢掉,仅仅
需要被保存下来。
实验中对比了Fine Tuning和Prefix Tuning在E2E、WebNLG和DART三个table-to-text任务上的效果:


3、Prompt Tuning
论文地址:https://arxiv.org/pdf/2104.08691.pdf
代码地址:https://github.com/google-research/prompt-tuning
Prompt Tuning可以看作是Prefix Tuning的简化版本,面向NLU任务,进行了更全面的效果对比,并且在大模型上成功打平了LM微调的效果,它给每个任务定义了自己的Prompt,然后拼接到数据上作为输入,但只在输入层加入prompt tokens,并且不需要加入 MLP 进行调整来解决难训练的问题。通过反向传播更新参数来学习prompts,而不是人工设计prompts;同时冻结模型原始权重,只训练prompts参数,训练完以后,用同一个模型可以做多任务推理。

对比Prefix-Tunning,prompt-tuning的主要差异如下,
论文使用100个prefix token作为默认参数,大于以上prefix-tuning默认的10个token,不过差异在于prompt-Tunning只对输入层(Embedding)进行微调,而Prefix是对虚拟Token对应的上游layer全部进行微调。因此Prompt-Tunning的微调参数量级要更小,且不需要修改原始模型结构,这是“简化”的来源。相同的prefix长度,Prompt-Tunning(<0.01%)微调的参数量级要比Prefix-Tunning(0.1%~1%)小10倍以上,如下图所示

为什么上面prefix-tuning只微调embedding层效果就不好,放在prompt-tuning这里效果就好了呢?因为评估的任务不同无法直接对比,个人感觉有两个因素,一个是模型规模,另一个是继续预训练,前者的可能更大些,在下面的消融实验中会提到
效果&消融实验
在SuperGLUE任务上,随着模型参数的上升,PromptTunning快速拉近和模型微调的效果,110亿的T5模型(上面prefix-tuning使用的是15亿的GPT2),已经可以打平在下游多任务联合微调的LM模型,并且远远的甩开了Prompt Design(GPT3 few-shot)

作者也做了全面的消融实验,包括以下4个方面,最核心的感受就是只要模型足够够大一切都好说
-
prompt长度(a):固定其他参数,作者尝试了{1,5,20,100,150}, Prompt token 的长度在20左右时的表现已经不错(超过20之后,提升Prompt token长度,对模型的性能提升不明显了),同样的,这个gap也会随着模型参数规模的提升而减小(即对于超大规模模型而言,即使 Prompt token 长度很短,对性能也不会有太大的影响);
-
Prompt初始化(b): 作者尝试了随机uniform初始化,用标签文本空间初始化,和用Top5K高频词采样初始化,在10^8规模,类标签词初始化效果最好。作者发现预测label也会在对应prompt空间内。不过到百亿规模后,初始化带来的影响就会消失;
-
T5继续预训练(c):作者认为T5本身的Span Corruption预训练目标和掩码词,并不适合冻结LM的场景,因为在微调中模型可以调整预训练目标和下游目标的差异,而只使用prompt可能无法弥合差异。其实这里已经能看出En-Dn框架在生成场景下没有GPT这样的Decoder来的自然。因此作者基于LM目标对T5进行继续预训练;
-
继续预训练step(d):以上的继续预训练steps,继续预训练步数越高,模型效果在不同模型规模上越单调;

可解释性
考虑Prompt-Tunning使用Embedding来表征指令,可解释性较差。作者使用cosine距离来搜索prompt embedding对应的Top5近邻。发现如下:
-
embedding的近邻出现语义相似的cluster,例如{ Technology / technology / Technologies/ technological / technologies }, 说明连续prompt实际可能是相关离散prompt词的聚合语义
-
当连续prompt较长(len=100), 存在多个prompt token的KNN相同:个人认为这和prefix-tuning使用MLP那里我的猜测相似,prompt应该是一个整体
-
使用标签词初始化,微调后标签词也大概率会出现在prompt的KNN中,说明初始化可以提供更好的prior信息加速收敛
相关文章:
大模型PEFT技术原理(一):BitFit、Prefix Tuning、Prompt Tuning
随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning&#x…...
VMware vSphere运维管理手册
适用版本:VMware vSphere 7.0 VMware vSphere 是 VMware 的虚拟化平台,可将数据中心转换为包括 CPU、存储和网络资源的聚合计算基础架构。vSphere 将这些基础架构作为一个统一的运行环境进行管理,并为您提供工具来管理加入该环境的数据中心。 ![[Pasted image 20231212132…...
学习笔记-mysql-各种函数的基本使用
1. 聚合函数 count , sum , min , max ,avg , group_concat() -- 将所有员工的名字合并成一行 select group_concat(emp_name) from emp; -- 指定分隔符合并 select department,group_concat(emp_name separator ; ) from emp group by department; -- 指定排序方式和分隔…...
DD小桔高级数分 2面挂
偏业务分析一点,注重AB实验在实际业务中的操作、业务方交流方式 一面|同事面 中规中矩,面试内容偏简单,不知道是不是因为晚8点面试的原因项目没有进行深究 自我介绍项目介绍1.你在实际项目中是怎么设计AB实验2.你在实际业务场景中是怎么判…...
居中面试问题
前端常问居中面试问题 css文本居中 文本水平居中 <div class"father"><div class"child"><div> <div>子类元素为行内元素,则给父类元素定义text-align:center 如果子元素是块元素,则给子元素定义margin&…...
网页设计-用户体验
Use Cases (用例) 用例是用户如何在网站上执行任务的书面描述,从用户的角度描述了系统响应请求时的行为。每个用例都是用户实现目标的一系列简单的步骤。简言之,用例是一种用于描述系统如何满足用户需求的方法。 用例的好处 1. 明确需求: Use…...
docker应用:vocechat
简介:VoceChat是一款超轻量级的Rust聊天应用程序、API和SDK,优先考虑私人托管。使用VoceChat建立您自己的聊天功能!作为一款非常好用的通讯应用程序,它可以让你与朋友、家人和同事进行即时消息聊天,支持图片视频的分享…...
linux 02 vmware的快照,文件管理
01.快照 使用快照: 同时的快照管理器: 如果想要返回快照,选择要选择的快照,跳转 02. 文件管理: cd 修改当前路径 02.touch 创建文件 03. mkdir 创建文件夹 mkdir -p 文件夹 (创建之前没有的上级文件…...
项目架构之Zabbix部署
1 项目架构 1.1 项目架构的组成 业务架构:客户端 → 防火墙 → 负载均衡(四层、七层) → web缓存/应用 → 业务逻辑(动态应用) → 数据缓存 → 数据持久层 运维架构:运维客户端 → 跳板机/堡垒机&#x…...
RocketMQ源码阅读-Message消息存储
RocketMQ源码阅读-Message消息存储 1. CommitLog的作用2. CommitLog 存储消息3. 时序图4. 小结 在Broker消息接收一篇中,分析到Broker接收到消息,最终会调用CommitLong#putMessage方法存储消息。 本篇来分析CommitLong#putMessage存储消息的流程。 1. C…...
《C语言学习》---郝斌版---笔记
简介 学习计算机,离不开C语言的学习,而C语言学习过程中的视频课教程,目前来说,如果郝斌老师的C语言排第二,没有人敢排第一 郝斌老师的C语言教程,通俗易懂,引人发思,特别适合新手入门…...
Python(32):字符串转换成列表或元组,列表转换成字典小例子
1、python 两个列表转换成字典 字符串转换成列表 列表转换成字典 column "ID,aes,sm4,sm4_a,email,phone,ssn,military,passport,intelssn,intelpassport,intelmilitary,intelganghui,inteltaitonei,credit_card_short,credit_card_long,job,sm4_cbc,sm4_a_cbc" …...
CentOS 7 安装私有平台OpenNebula
目录 一、配置yum源 二、配置数据库MySQL 2.1 安装MySQL 2.2 修改MySQL密码 2.3 创建项目用户和库 三、安装配置前端包 四、设置oneadmin账号密码 五、验证安装 5.1 命令行验证安装 5.2 数据存放位置 5.3 端口介绍 5.4 命令介绍 六、访问 6.1 设置语言 6.2 创建主…...
(aiohttp-asyncio-FFmpeg-Docker-SRS)实现异步摄像头转码服务器
1. 背景介绍 在先前的博客文章中,我们已经搭建了一个基于SRS的流媒体服务器。现在,我们希望通过Web接口来控制这个服务器的行为,特别是对于正在进行的 RTSP 转码任务的管理。这将使我们能够在不停止整个服务器的情况下,动态地启动…...
基于STM32微控制器的四轮智能小车控制系统设计
标题:基于STM32微控制器的四轮智能小车控制系统设计与实现 摘要: 本文针对移动机器人领域的应用需求,详细介绍了基于STM32系列单片机(以STM32F103C8T6为例)为核心的四轮小车控制系统的设计和实现过程。该系统集成了电…...
JPA的复杂查询包括一对多多对一和多对多的查询
1. 多表关联查询和排序 假设我们有两个实体类:Customer和Order,它们之间是一对多的关系,即一个客户可以有多个订单。我们想要查询某个客户的所有订单,并按订单金额进行降序排序。 Entity Table(name "customers") pu…...
电脑文件mfc100u.dll丢失的解决方法分析,怎么修复mfc100u.dll靠谱
mfc100u.dll丢失了要怎么办?其实很多人都遇到过这样的电脑故障吧,说这个mfc100u.dll文件已经不见了,然后一些程序打不开了,那么这种情况我们要怎么解决呢?今天我们就来给大家详细的说说mfc100u.dll丢失的解决方法。 一…...
从DETR到Mask2former(2): 损失函数loss function
DETR的损失函数包括几个部分,如果只看论文或者代码,比较难理解,最好是可以打断点调试,对照着论文看。但是现在DETR模型都已经被集成进各种框架中,很难进入内部打断掉调试。与此同时,数据的label的前处理也比…...
Java21 + SpringBoot3集成WebSocket
文章目录 前言相关技术简介什么是WebSocketWebSocket的原理WebSocket与HTTP协议的关系WebSocket优点WebSocket应用场景 实现方式1. 添加maven依赖2. 添加WebSocket配置类,定义ServerEndpointExporter Bean3. 定义WebSocket Endpoint4. 前端创建WebSocket对象 总结 前…...
鲸鱼优化算法WOA改进预告
鲸鱼优化算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的启发式优化算法。这个算法模拟了鲸鱼的觅食行为和社会行为,通过模拟这些行为来解决优化问题。 以下是鲸鱼优化算法的一些关键特点和步骤&#x…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
