当前位置: 首页 > news >正文

OpenCV——八邻域断点检测

目录

  • 一、理论基础
    • 1、八邻域
    • 2、断点检测
  • 二、代码实现
  • 三、结果展示
  • 四、参考链接

在这里插入图片描述

OpenCV——八邻域断点检测由CSDN点云侠原创,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。

一、理论基础

1、八邻域

在这里插入图片描述

图1 八邻域示意图

在这里插入图片描述

图2 八邻域对应坐标关系

2、断点检测

  首先将图像进行二值化,然后检测以 P 1 P_1 P1为中心的它的八个领域,

  • P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 ≤ 255 × 6 P_2+P_3+P_4+P_5+P_6+P_7+P_8+P_9\leq255\times6 P2+P3+P4+P5+P6+P7+P8+P9255×6,则 P 1 P_1 P1点是一个边界点。
  • P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 ≥ 255 × 6 P_2+P_3+P_4+P_5+P_6+P_7+P_8+P_9\geq255\times6 P2+P3+P4+P5+P6+P7+P8+P9255×6,则 P 1 P_1 P1点是一个内部点。
  • P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 = 0 P_2+P_3+P_4+P_5+P_6+P_7+P_8+P_9=0 P2+P3+P4+P5+P6+P7+P8+P9=0,则 P 1 P_1 P1点是一个孤立点。
  • P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8 + P 9 = 255 P_2+P_3+P_4+P_5+P_6+P_7+P_8+P_9=255 P2+P3+P4+P5+P6+P7+P8+P9=255,则 P 1 P_1 P1点是一个端点。
    在这里插入图片描述
图3 点的类型

二、代码实现

#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;vector<Point> breakImage(Mat& src);int main()
{  // 加载RGB图片Mat colorImage, grayImage, binImage;colorImage = imread("2.png");// 显示图片namedWindow("原始图像", cv::WINDOW_NORMAL); // 图像窗口函数imshow("原始图像", colorImage);// 图像二值化cvtColor(colorImage, grayImage, COLOR_BGR2GRAY);threshold(grayImage, binImage, 1, 255, THRESH_BINARY);vector<Point>P;P = breakImage(binImage);int nsize = P.size();Mat temp = Mat::zeros(binImage.size(), CV_8UC3);// 用圆圈出端点for (int i = 0; i < nsize; i++){circle(temp, P[i], 10, Scalar(0, 255, 0));}Mat circleadd;addWeighted(temp, 1, colorImage, 1, 0, circleadd);imwrite("端点.png",circleadd);namedWindow("circleadd", cv::WINDOW_NORMAL);imshow("circleadd", circleadd);waitKey(0);}
#pragma region//8邻域提取端点
vector<Point> breakImage(Mat& src)
{vector<Point> pointxy;Point ptPoint;Size size = src.size();int nSize;for (int i = 1; i < size.height - 1; i++){uchar* dataPre = src.ptr<uchar>(i - 1);uchar* dataCurr = src.ptr<uchar>(i);uchar* dataNext = src.ptr<uchar>(i + 1);for (int j = 1; j < size.width - 1; j++){//  p9 p2 p3    //  p8 p1 p4    //  p7 p6 p5int p1 = dataCurr[j];if (p1 != 255) continue;int p2 = dataPre[j];int p3 = dataPre[j + 1];int p4 = dataCurr[j + 1];int p5 = dataNext[j + 1];int p6 = dataNext[j];int p7 = dataNext[j - 1];int p8 = dataCurr[j - 1];int p9 = dataPre[j - 1];if (p1 == 255){if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) == 255){ptPoint.x = j;ptPoint.y = i;pointxy.push_back(ptPoint);printf("端点的坐标为:x:%d y:%d\n", j, i);}}}}nSize = (int)pointxy.size();printf("提取端点个数:%d\n", nSize);return pointxy;
}
#pragma endregion

三、结果展示

在这里插入图片描述
在这里插入图片描述

四、参考链接

[1] 八邻域断点检测
[2] OpenCV 八领域断点检测+断点缺陷修补

相关文章:

OpenCV——八邻域断点检测

目录 一、理论基础1、八邻域2、断点检测 二、代码实现三、结果展示四、参考链接 OpenCV——八邻域断点检测由CSDN点云侠原创&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫。 一、理论基础 1、八邻域 图1 八邻域示意图 图…...

leetcode238:除自身以外数组的乘积

文章目录 1.使用除法&#xff08;违背题意&#xff09;2.左右乘积列表3.空间复杂度为O(1)的方法 在leetcode上刷到了这一题&#xff0c;一开始并没有想到好的解题思路&#xff0c;写篇博客再来梳理一下吧。 题目要求&#xff1a; 不使用除法在O(n)时间复杂度内 1.使用除法&am…...

VTK开发调试环境下载(VTK开发环境一步到位直接开发,无需自己配置编译 VS2017+Qt5.12.10+VTK)

一、无与伦比的优势 直接下载代码就可以调试的VTK代码仓库。 二、资源制作原理 这个资源根据VTK源码 编译出动态库文件 pdb lib dll 文件&#xff08; x64 debug &#xff09; 并将这两者同时放在一个代码仓库里&#xff0c;下载就能用。 三、使用方法&#xff08;vtk-so…...

【JAVA】在 Queue 中 poll()和 remove()有什么区别

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;JAVA ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 poll() 方法&#xff1a; remove() 方法&#xff1a; 区别总结&#xff1a; 结语 我的其他博客 前言 在Java的Queue接口中&…...

常用Java代码-Java中的Optional类和null安全编程

在Java中&#xff0c;Optional 是一个可以为null的容器对象。如果值存在则isPresent()方法返回true。调用get()方法会返回值&#xff0c;如果值为null则抛出NullPointerException。以下是一个详细的代码详解。 在之前的Java版本中&#xff0c;程序员需要手动检查是否为null&am…...

android.os.NetworkOnMainThreadException

问题 android.os.NetworkOnMainThreadException详细问题 核心代码如下&#xff1a; import android.os.Bundle;import androidx.appcompat.app.AppCompatActivity;import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ja…...

Java生成四位数随机验证码

引言&#xff1a; 我们生活中登录的时候都要输入验证码&#xff0c;这些验证码是为了增加注册或者登录难度&#xff0c;减少被人用脚本疯狂登录注册导致的一系列危害&#xff0c;减少数据库的一些压力。 毕竟那些用脚本生成的账号都是垃圾账号 本次实践&#xff1a;生成这样的…...

编程探秘:Python深渊之旅-----数据可视化(八)

客户提出了对数据报告和图表的具体要求&#xff0c;这使得团队需要快速掌握数据可视化的技巧。派超决定深入了解 Python 中的数据可视化工具。 派超&#xff08;兴奋地&#xff09;&#xff1a;我们有机会做些真正酷炫的数据报告了&#xff01;我听说 Python 有很棒的图表库。…...

上海亚商投顾:创业板指冲高回落 光伏、航运股逆势走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指1月12日冲高回落&#xff0c;创业板指午后跌近1%。北证50指数跌超6%&#xff0c;倍益康、华信永道、众诚科…...

Python3 中常用字符串函数介绍

介绍 Python 中有几个与 字符串数据类型相关的内置函数。这些函数让我们能够轻松修改和操作字符串。我们可以将函数视为在代码元素上执行的操作。内置函数是在 Python 编程语言中定义的&#xff0c;并且可以随时供我们使用的函数。 在本教程中&#xff0c;我们将介绍在 Pytho…...

Python - 深夜数据结构与算法之 AVL 树 红黑树

目录 一.引言 二.高级树的简介 1.树 2.二叉树 3.二叉搜索树 4.平衡二叉树 三.AVL 树 ◆ 插入节点 ◆ 左旋 ◆ 右旋 ◆ 左右旋 ◆ 右左旋 ◆ 一般形式 ◆ 实际操作 ◆ 总结 四.红黑树 ◆ 概念 ◆ 示例 ◆ 对比 五.总结 一.引言 前面我们介绍了二叉树、二叉…...

Zookeeper使用详解

介绍 ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Google的Chubby一个开源的实现&#xff0c;是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件&#xff0c;提供的功能包括&#xff1a;配置维护、域名服务、分布…...

C#属性(Property)

文章目录 一、C#属性&#xff08;Property&#xff09;&#xff1f;二、属性的用法总结 一、C#属性&#xff08;Property&#xff09;&#xff1f; C#属性&#xff08;Property&#xff09;是一种访问器&#xff08;accessor&#xff09;&#xff0c;用于封装一个类的字段&…...

在docker中搭建部署clickhouse

因需要给网关日志拉取并存储供数据分析师分析&#xff0c;由于几十个项目的网关请求数量很大&#xff0c;放在mysql不合适&#xff0c;MongoDB不适合分析&#xff0c;于是准备存放在clickhouse&#xff0c;clickhouse对于读写支持也比较友好&#xff0c;说干就干 1、在服务器中…...

第九部分 使用函数 (三)

目录 一、文件名操作函数 1、dir 2、notdir 3、suffix 4、basename 5、addsuffix 6、addprefix 7、join 一、文件名操作函数 下面我们要介绍的函数主要是处理文件名的。每个函数的参数字符串都会被当做一个或是 一系列的文件名来对待。 1、dir $(dir <names..>…...

基础命令继续

1&#xff1a;创建目录命令 mkdir命令 注意&#xff1a;创建文件夹需要修改权限&#xff0c;请确保操作均在HOME目录内&#xff0c;不要在Home外操作&#xff0c;涉及到权限问题&#xff0c;HOME外无法识别 小结&#xff1a; 练习: 2&#xff1a;touch创建文件 2&#xff1a;c…...

uni-app做A-Z排序通讯录、索引列表

上图是效果图&#xff0c;三个问题 访问电话通讯录&#xff0c;拿数据拿到用户的联系人数组对象&#xff0c;之后根据A-Z排序根据字母索引快速搜索 首先说数据怎么拿 - 社区有指导https://ask.dcloud.net.cn/question/64117 uniapp 调取通讯录 // #ifdef APP-PLUSplus.contac…...

Codeforces Round 768 (Div. 1) D. Flipping Range(思维题 等价类性质 dp)

题目 思路来源 官方题解 洛谷题解 题解 可操作的最短区间长度肯定是gcd&#xff0c;记为g&#xff0c;然后考虑如何dp 考虑g个等价类&#xff0c;每个等价类i,ig,i2*g,... 每次翻转长度为g的区间&#xff0c;会同时影响到g个等价类总的翻转的奇偶性&#xff0c; 性质一&…...

springboot集成kafka消费数据

springboot集成kafka消费数据 文章目录 springboot集成kafka消费数据1.引入pom依赖2.添加配置文件2.1.添加KafkaConsumerConfig.java2.2.添加KafkaIotCustomProperties.java2.3.添加application.yml配置 3.消费者代码 1.引入pom依赖 <dependency><groupId>org.spri…...

单例模式---JAVA

目录 “饿汉”模式 完整代码 “懒汉”模式 完整代码 单例模式&#xff1a;保证某个类在程序中只存在唯一一份实例, 而不会创建出多个实例。 单例模式可以通过实例创建的时间来分为两种&#xff1a;“饿汉”和“懒汉”模式。 “饿汉”模式 所谓的“饿汉”模式实则就是在类…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

用鸿蒙HarmonyOS5实现中国象棋小游戏的过程

下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...

python可视化:俄乌战争时间线关键节点与深层原因

俄乌战争时间线可视化分析&#xff1a;关键节点与深层原因 俄乌战争是21世纪欧洲最具影响力的地缘政治冲突之一&#xff0c;自2022年2月爆发以来已持续超过3年。 本文将通过Python可视化工具&#xff0c;系统分析这场战争的时间线、关键节点及其背后的深层原因&#xff0c;全面…...