当前位置: 首页 > news >正文

蓝桥杯AcWing学习笔记 8-2数论的学习(下)

蓝桥杯

我的AcWing

题目及图片来自蓝桥杯C++ AB组辅导课

数论(下)

蓝桥杯省赛中考的数论不是很多,这里讲几个蓝桥杯常考的知识点。

约数个数定理

我们如何去求一个数的约数个数呢?

N N N分解质因数的结果: N = P 1 α 1 × P 2 α 2 × . . . × P k α k N=P_{1}^{α_{1}}×P_{2}^{α_{2}}×...×P_{k}^{α_{k}} N=P1α1×P2α2×...×Pkαk

约数个数是: ( α 1 + 1 ) ( α 2 + 1 ) . . . ( α k + 1 ) (α_{1}+1)(α_{2}+1)...(α_{k}+1) (α1+1)(α2+1)...(αk+1)

假设 N N N的一个约数 d = P 1 β 1 × P 2 β 2 × . . . × P k β k ( 0 ≤ β i ≤ α i ) d=P_{1}^{β_{1}}×P_{2}^{β_{2}}×...×P_{k}^{β_{k}}(0 \leq β_{i}\leq α_{i}) d=P1β1×P2β2×...×Pkβk(0βiαi),每一个约数都可以表示为这样的形式,这种约数的个数也就等于 k k k 元组的个数: ( β 1 , β 2 . . . β k ) (β_{1},β_{2}...β_{k}) (β1,β2...βk),这 k k k 元组有多少种选法: ( α 1 + 1 ) ⋅ ( α 2 + 1 ) ⋅ ( α k + 1 ) (α_{1}+1)·(α_{2}+1)·(α_{k}+1) (α1+1)(α2+1)(αk+1)

约数和定理

公式: ( 1 + P 1 + P 1 2 + . . + P 1 α 1 ) ( 1 + P 2 + P 2 2 + . . + P 2 α 2 ) . . . ( 1 + P k + P k 2 + . . + P k α k ) (1+P_{1}+P_{1}^2+..+P_{1}^{α_{1}})(1+P_{2}+P_{2}^2+..+P_{2}^{α_{2}})...(1+P_{k}+P_{k}^2+..+P_{k}^{α_{k}}) (1+P1+P12+..+P1α1)(1+P2+P22+..+P2α2)...(1+Pk+Pk2+..+Pkαk)

这个公式展开了就是上面定理的约数 d = P 1 β 1 × P 2 β 2 × . . . × P k β k ( 0 ≤ β i ≤ α i ) d=P_{1}^{β_{1}}×P_{2}^{β_{2}}×...×P_{k}^{β_{k}}(0 \leq β_{i}\leq α_{i}) d=P1β1×P2β2×...×Pkβk(0βiαi) 之和。

image-20220306144504746

例题

AcWing 1296. 聪明的燕姿

约数个数定理

约数和定理

给我们一个 S S S,问我们有多少个正整数满足它的所有正约数之和等于 S S S

S S S 满足约数和定理: S = ( 1 + P 1 + P 1 2 + . . + P 1 α 1 ) ( 1 + P 2 + P 2 2 + . . + P 2 α 2 ) . . . ( 1 + P k + P k 2 + . . + P k α k ) S=(1+P_{1}+P_{1}^2+..+P_{1}^{α_{1}})(1+P_{2}+P_{2}^2+..+P_{2}^{α_{2}})...(1+P_{k}+P_{k}^2+..+P_{k}^{α_{k}}) S=(1+P1+P12+..+P1α1)(1+P2+P22+..+P2α2)...(1+Pk+Pk2+..+Pkαk)

因为方案数非常少,我们可以用暴搜dfs求解。

这题太难理解啦,之后的题也没有做了。

相关文章:

蓝桥杯AcWing学习笔记 8-2数论的学习(下)

蓝桥杯 我的AcWing 题目及图片来自蓝桥杯C AB组辅导课 数论(下) 蓝桥杯省赛中考的数论不是很多,这里讲几个蓝桥杯常考的知识点。 约数个数定理 我们如何去求一个数的约数个数呢? N N N分解质因数的结果: N P 1 α…...

vcs makefile

主要参考: VCS使用Makefile教程_vcs makefile-CSDN博客https://blog.csdn.net/weixin_45243340/article/details/129255218?ops_request_misc%257B%2522request%255Fid%2522%253A%2522170524049516800227431373%2522%252C%2522scm%2522%253A%252220140713.1301023…...

《Training language models to follow instructions》论文解读--训练语言模型遵循人类反馈的指令

目录 1摘要 2介绍 方法及实验细节 3.1高层次方法论 3.2数据集 3.3任务 3.4人体数据收集 3.5模型 3.6评价 4 结果 4.1 API分布结果 4.2公共NLP数据集的结果 4.3定性结果 问题 1.什么是rm分数 更多资料 1摘要 使语言模型更大并不能使它们更好地遵循用户的意图。例…...

Redis的实现二: c、c++的网络通信编程技术,让服务器处理多个client

看过上期的都知道,我是搞java的,所以对这些可能理解不是很清楚,各位看完可以尽情发言。 事件循环和非阻塞IO 在服务器端网络编程中,有三种处理并发连接的方法。 它们是:分叉、多线程和事件循环。分叉为每个客户端连接创建新…...

QT上位机开发(动画效果)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 不管是仿真,还是对真实环境的一比一模拟,动画都是非常好的一种呈现方式。目前在qt上面,实现动画主要有两种方法…...

手写实现 bind 函数

Function.prototype.myBind function(context) {if (typeof this ! function) {return}const args [...arguments].slice(1)const fn thisreturn function Fn() {// 判断函数作为构造函数的情况,这个时候需要传入当前的函数的this给apply调用,其余情况…...

安卓Android Studio读写MifareOne M1 IC卡源码

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?id615391857885&spma1z10.5-c-s.w4002-21818769070.11.3d2f789eOUPJBK <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xm…...

一二三应用开发平台文件处理设计与实现系列之5——MinIO技术预研

背景 上篇介绍了文件读写框架设计与实现&#xff0c;同时顺便说明了本地磁盘存储模式的实现模式。 今天来说下基于文件读写框架&#xff0c;如何集成对象存储组件minio&#xff0c;集成之前&#xff0c;需要对minio进行必要的了解&#xff0c;本篇是minio的技术预研。 minio简…...

Native.js是什么

Native.js 是一个开源项目&#xff0c;旨在通过 JavaScript 调用原生 Android API。它的目标是让 JavaScript 开发者能够使用 Android 原生 API&#xff0c;从而在不编写原生代码的情况下构建 Android 应用。 使用 Native.js&#xff0c;开发者可以使用 JavaScript 调用 Andro…...

Vant-ui图片懒加载

核心代码 在你的全局顶部引入和初始化 Vue.use(vant.Lazyload, {loading: /StaticFile/img/jiazai.jpg,error: /StaticFile/img/jiazai.jpg,lazyComponent: false, });//图片懒加载 <img v-lazy"https://img-blog.csdnimg.cn/direct/3d2c8a7e2c0040488a8128c3e381d58…...

创建EasyCodeMybatisCodeHelperPro模板文件用于将数据库表生成前端json文件

在intellij idea中&#xff0c;通过插件EasyCodeMybatisCodeHelperPro&#xff0c;从现有的模板文件中选择一个复制粘贴&#xff0c;然后稍为修改&#xff0c;即可得到一个合适的模板文件。 现在的前端&#xff0c;越来越像后端。TypeScript替代了JavaScript&#xff0c;引入了…...

华为端口安全常用3种方法配置案例

安全动态mac地址学习功能 [Huawei]int g0/0/01 interface GigabitEthernet0/0/1 port-security enable //开启安全 port-security max-mac-num 2 //最多为2个mac地址学习 port-security protect-action restrict //丢包带警告 port-security aging-time 1 //mac地址的老化时间…...

RH850P1X芯片学习笔记-Flash Memory

文章目录 FeaturesClock Supply Block DiagramFlash SizeMemory ConfigurationRegistersRegister Base AddressList of RegistersRegister Reset Condition 与Flash Memory相关的操作模式Functional OverviewOption BytesOPBT0 — Option Byte 0OPBT1 — Option Byte 1OPBT2 —…...

利用XSS漏洞打cookie

目录 1、为什么要打cookie&#xff1f; 2、怎样利用XSS来打cookie&#xff1f; 3、利用Bluelotus_xssReceiver平台来打cookie 4、利用beef-xss平台来打cookie 上一篇给大家介绍了xss漏洞的基础知识&#xff0c;在本篇章将会介绍和演示一下利用xss漏洞打cookie的演示&#x…...

用java写个redis工具类

下面是一个简单的Redis工具类的示例&#xff0c;使用Java语言编写&#xff1a; import redis.clients.jedis.Jedis;public class RedisUtils {private static Jedis jedis;public static void connect(String host, int port) {jedis new Jedis(host, port);}public static v…...

实现防抖函数

// 防抖就是&#xff0c;事件触发 delay 秒后再执行&#xff0c;如果有重新的触发&#xff0c;重新计时 function debounce(func, delay) {if(typeof func ! function) {return}let timer 0return function () {if (timer) {clearTimeout(timer)timer null}timer setTimeout…...

MetaGPT task1学习

基础知识学习了解&#xff1a; 安装环境&#xff1a; 获取MetaGPT 使用pip获取MetaGPT pip install -i https://pypi.tuna.tsinghua.edu.cn/simple metagpt0.5.2 配置MetaGPT 完成MetaGPT后&#xff0c;我们还需要完成一些配置才能开始使用这个强力的框架&#xff0c;包括配…...

关于量子计算机的设想

从CPU架构说起 CISCRISCNISCCCSC CISC是复杂指令集计算机&#xff0c;以x86为代表&#xff1b; RISC是精简指令集计算机&#xff0c;以ARM为代表&#xff1b; NISC是无指令集计算机&#xff0c;CCSC是核-电路分离计算机&#xff0c;这两个是本文要讨论的内容。 如果没有指令…...

序列模型(4)—— Scaling Laws

本文介绍 LLM 训练过程中重要的 Scaling Laws&#xff0c;这是一个经验规律&#xff0c;指出了固定训练成本&#xff08;总计算量FLOPs&#xff09; C C C 时&#xff0c;如何调配模型规模&#xff08;参数量&#xff09; N N N 和训练 Token 数据量 D D D&#xff0c;才能实现…...

【软件测试学习笔记1】测试基础

1.软件测试的定义 软件的定义&#xff1a;控制计算机硬件工作的工具 软件的基本组成&#xff1a;页面客户端&#xff0c;代码服务器&#xff0c;数据服务器 软件产生的过程&#xff1a;需求产生&#xff08;产品经理&#xff09;&#xff0c;需求文档&#xff0c;设计效果图…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...