当前位置: 首页 > news >正文

stable diffusion代码学习笔记

前言:本文没有太多公式推理,只有一些简单的公式,以及公式和代码的对应关系。本文仅做个人学习笔记,如有理解错误的地方,请指出。

本文包含stable diffusion入门文献和不同版本的代码。

文献资源

  1. 本文学习的代码;
  2. 相关文献:
  • Denoising Diffusion Probabilistic Models : DDPM,这个是必看的,推推公式
  • Denoising Diffusion Implicit Models :DDIM,对 DDPM 的改进
  • Pseudo Numerical Methods for Diffusion Models on Manifolds :PNMD/PLMS,对 DDPM 的改进
  • High-Resolution Image Synthesis with Latent Diffusion Models :Latent-Diffusion,必看
  • Neural Discrete Representation Learning : VQVAE,简单翻了翻,示意图非常形象,很容易了解其做法

代码资源

  1. stable diffusion v1.1-v1.4, https://github.com/CompVis/stable-diffusion
  2. stable diffusion v1.5,https://github.com/runwayml/stable-diffusion
  3. stable diffusion v2,https://github.com/Stability-AI/stablediffusion
  4. stable diffusion XL,https://github.com/Stability-AI/generative-models

前向过程(训练)

  • 输入一张图片+随机噪声,训练unet,网络预测图片加上的噪声

反向过程(推理)

  • 给个随机噪声,不断迭代去噪,输出一张图片

总体流程

  • 输入的prompt经过clip encoder编码成(3+3,77,768)特征,正负prompt各3个,默认negative prompt为空‘’,解码时正的和负的latent图片用公式计算一下才是最终结果;time step通过linear层得到(3+3,1280)特征;把prompt和time ebedding和随机生成的图片放入unet,得到的就是我们要的图片。

采样流程 text2img

  • 该函数在PLMSSampler中,输入x(噪声,(3,4,64,64))-----c(输入的prompt,(3,77,768)----t (输入的time step,第几次去噪(3,)。把这三个东西输入unet,得到预测的噪声e_t。
 def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):b, *_, device = *x.shape, x.devicedef get_model_output(x, t):if unconditional_conditioning is None or unconditional_guidance_scale == 1.:e_t = self.model.apply_model(x, t, c)else:x_in = torch.cat([x] * 2)t_in = torch.cat([t] * 2)c_in = torch.cat([unconditional_conditioning, c]) # 积极消极的prompt,解码时按照公式减去消极prompt的图像e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)if score_corrector is not None:assert self.model.parameterization == "eps"e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)return e_talphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphasalphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prevsqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphassigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmasdef get_x_prev_and_pred_x0(e_t, index):# select parameters corresponding to the currently considered timestepa_t = torch.full((b, 1, 1, 1), alphas[index], device=device)a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)# current prediction for x_0pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()if quantize_denoised:pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)# direction pointing to x_tdir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_tnoise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperatureif noise_dropout > 0.:noise = torch.nn.functional.dropout(noise, p=noise_dropout)x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noisereturn x_prev, pred_x0e_t = get_model_output(x, t) # 模型预测的噪声if len(old_eps) == 0:# Pseudo Improved Euler (2nd order)x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) # 输入噪声减去预测噪声得到新的噪声,当前预测的latent图片e_t_next = get_model_output(x_prev, t_next)e_t_prime = (e_t + e_t_next) / 2 # 两次噪声的均值?elif len(old_eps) == 1:# 2nd order Pseudo Linear Multistep (Adams-Bashforth)e_t_prime = (3 * e_t - old_eps[-1]) / 2elif len(old_eps) == 2:# 3nd order Pseudo Linear Multistep (Adams-Bashforth)e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12elif len(old_eps) >= 3:# 4nd order Pseudo Linear Multistep (Adams-Bashforth)e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)return x_prev, pred_x0, e_t
  • 接下来看公式:
    在这里插入图片描述
  • 网络得到e_t后,进入到get_x_prev_and_pred_x0函数,可以看到pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()就是上述公式,也就是说网络的预测结果通过公式计算,我们可以得到预测的pred_x0原始图片和前一刻的噪声图像x_prev
        def get_x_prev_and_pred_x0(e_t, index):# select parameters corresponding to the currently considered timestepa_t = torch.full((b, 1, 1, 1), alphas[index], device=device)a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)# current prediction for x_0pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()if quantize_denoised:pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)# direction pointing to x_tdir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_tnoise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperatureif noise_dropout > 0.:noise = torch.nn.functional.dropout(noise, p=noise_dropout)x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noisereturn x_prev, pred_x0
  • 前一刻的噪声图像的推理公式如图:
    在这里插入图片描述
    在这里插入图片描述

  • 得到了上一刻的噪声图片x_prev后(也就是函数返回的img),继续迭代,最终生成需要的图片。
    在这里插入图片描述

额外说明

这部分代码应该就是PLMS加速采样用的,论文中有公式推理
在这里插入图片描述
另外,还有一些参数是训练时候保存的,betas逐渐增大,用来控制噪声的强度。变量名解析 log_one_minus_alphas_cumprod其实就是log(1-alpha(右下角t)(头上直线)),没有带prev的都是当前时刻t,带prev的是前一时刻t-1。

在这里插入图片描述

参考文献:

https://blog.csdn.net/Eric_1993/article/details/129600524?spm=1001.2014.3001.5502
https://zhuanlan.zhihu.com/p/630354327

相关文章:

stable diffusion代码学习笔记

前言:本文没有太多公式推理,只有一些简单的公式,以及公式和代码的对应关系。本文仅做个人学习笔记,如有理解错误的地方,请指出。 本文包含stable diffusion入门文献和不同版本的代码。 文献资源 本文学习的代码&…...

腾讯云服务器怎么买?两种购买方式更省钱

腾讯云服务器购买流程很简单,有两种购买方式,直接在官方活动上购买比较划算,在云服务器CVM或轻量应用服务器页面自定义购买价格比较贵,但是自定义购买云服务器CPU内存带宽配置选择范围广,活动上购买只能选择固定的活动…...

基于SpringBoot自定义控制是否需要开启定时功能

在基于SpringBoot的开发过程中,有时候会在应用中使用定时任务,然后服务器上启动定时任务,本地就不需要开启定时任务,使用一个参数进行控制,通过查资料得知非常简单。 参数配置 在application-dev.yml中加入如下配置 …...

“确定要在不复制其属性的情况下复制此文件?”解决方案(将U盘格式由FAT格式转换为NTFS格式)

文章目录 1.问题描述2.问题分析3.问题解决3.1 方法一3.2 方法二3.3 方法三 1.问题描述 从电脑上复制文件到U盘里会出现“确定要在不复制其属性的情况下复制此文件?”提示。 2.问题分析 如果这个文件在NTFS分区上,且存在特殊的安全属性。那么把它从NT…...

视频监控系统EasyCVR如何通过调用API接口查询和下载设备录像?

智慧安防平台EasyCVR是基于各种IP流媒体协议传输的视频汇聚和融合管理平台。视频流媒体服务器EasyCVR采用了开放式的网络结构,支持高清视频的接入和传输、分发,平台提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联…...

15.鸿蒙HarmonyOS App(JAVA)进度条与圆形进度条

15.鸿蒙HarmonyOS App(JAVA)进度条与圆形进度条 progressBar2.setIndeterminate(true);//设置无限模式,运行查看动态效果 //创建并设置无限模式元素 ShapeElement element new ShapeElement(); element.setBounds(0,0,50,50); element.setRgbColor(new RgbColor(255,0,0)); …...

【FastAPI】路径参数

路径参数 from fastapi import FastAPIapp FastAPI()app.get("/items/{item_id}") async def read_item(item_id):return {"item_id": item_id}其中{item_id}就为路径参数 运行以上程序当访问 :http://127.0.0.1:8000/items/fastapi时候 将会…...

【docker笔记】DockerFile

DockerFile Docker镜像结构的分层 镜像不是一个单一的文件,而是有多层构成。 容器其实是在镜像的最上面加了一层读写层,在运行容器里做的任何文件改动,都会写到这个读写层。 如果删除了容器,也就是删除了其最上面的读写层&…...

React项目搭建流程

第一步 利用脚手架创建ts类型的react项目: 执行如下的命令:create-react-app myDemo --template typescript ; 第二步 清理项目目录结构: src/ index.tsx, app.txs, react-app-env.d.ts public/index.ht…...

QT DAY1作业

1.QQ登录界面 头文件代码 #ifndef MYWIDGET_H #define MYWIDGET_H#include <QWidget> #include <QIcon> #include <QLabel> #include <QPushButton> #include <QMovie> #include <QLineEdit>class MyWidget : public QWidget {Q_OBJECTpu…...

Java后端开发——Mybatis实验

文章目录 Java后端开发——Mybatis实验一、MyBatis入门程序1.创建工程2.引入相关依赖3.数据库准备4.编写数据库连接信息配置文件5.创建POJO实体6.编写核心配置文件和映射文件 二、MyBatis案例&#xff1a;员工管理系统1.在mybatis数据库中创建employee表2.创建持久化类Employee…...

【UE Niagara 网格体粒子系列】02-自定义网格

目录 步骤 一、创建自定义网格体 二、创建Niagara系统 步骤 一、创建自定义网格体 1. 打开Blender&#xff0c;按下ShiftA来创建一个平面 将该平面旋转90 导出为fbx 设置导出选定的物体&#xff0c;这里命名为“SM_PlaneFaceCamera.fbx” 按H隐藏刚才创建的平面&#x…...

k8s 检测node节点内存使用率平衡调度脚本 —— 筑梦之路

直接上脚本&#xff1a; #! /bin/bash#对实际使用内存大于85%的机器停止调度&#xff0c;对实际使用内存小于70%的 关闭调度# 获取实际内存小于或等于70%的机器 memory_lt_70kubectl top nodes |awk NR>1{if($50<70) print $1} # 获取实际内存大于或等于85%的机器 memor…...

React Native集成到现有原生应用

本篇文章以MacOS环境开发iOS平台为例&#xff0c;记录一下在原生APP基础上集成React Native React Native中文网 详细介绍了搭建环境和集成RN的步骤。 环境搭建 必须安装的依赖有&#xff1a;Node、Watchman、Xcode 和 CocoaPods。 安装Homebrew Homebrew是一款Mac OS平台下…...

完全卸载grafana

先停掉grafana sudo systemctl stop grafana-server 查看要卸载的包的名字 yum list installed yum remove grafana-enterprise.x86_64 成功 删除grafana的数据目录 sudo rm -rf /etc/grafana/sudo rm -rf /usr/share/grafana/sudo rm -rf /var/lib/grafana/...

Vue2.组件通信

样式冲突 写在组件中的样式默认会全局生效。容易造成多个组件之间的样式冲突问题。 可以给组件加上scoped属性&#xff0c;让样式只作用于当前组件。 原理&#xff1a; 给当前组件模板的所有元素&#xff0c;加上一个自定义属性data-v-hash值&#xff0c;用以区分不同的组件。…...

CAS的超~详细介绍

什么是CAS CAS全称Compare and swap,是一种比较特殊的CPU指令. 字面意思:"比较并交换", 一个CAS涉及到以下操作: 我们假设内存中的原数据为V,旧的预期值A,需要修改的新值B. 1.比较A和V是否相等(比较) 2.如果相等,将B写入V.(交换) 3.返回操作是否成功. 伪代码 下面…...

Scott用户数据表的分析

Oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209645 如果想要知道某个用户所有的数据表: select * from tab; 此时结果中一共返回了四张数据表&#xff0c;分别为部门表&#xff08;dept&#xff09; &#xff0c;员工表&#xff08;emp&a…...

网络基础学习(3):交换机

1.交换机结构 &#xff08;1&#xff09;网线接口和后面的电路部分加在一起称为一个端口&#xff0c;也就是说交换机的一个端口就相当于计算机上的一块网卡。 如果在计算机上安装多个网卡&#xff0c;并让网卡接收所有网络包&#xff0c;再安装具备交换机功能的软件&#xff0…...

【软件测试学习笔记2】用例设计方法

1.能对穷举场景设计测试点&#xff08;等价法&#xff09; 等价类&#xff1a; 说明&#xff1a;在所有测试数据中&#xff0c;具有某种共同特征的数据集合进行划分 分类&#xff1a;有效等价类&#xff1a;满足需求的数据集合 无效等价类&#xff1a;不满足需求的数据集合 步…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...