当前位置: 首页 > news >正文

多维时序 | Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测

多维时序 | Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测

目录

    • 多维时序 | Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测(完整源码和数据)
2.运行环境为Matlab2023b;
3.excel数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价。

程序设计

  • 完整源码和数据获取方式私信回复Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

多维时序 | Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测

多维时序 | Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测 目录 多维时序 | Matlab实现GRO-CNN-LSTM-Attention淘金算法优化卷积神经网络-长短期记忆网络结合注意力机制多变量时间序列预测效果一览基本介绍程序设…...

SQL-DQL-基础查询

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL 🍹文章作者技术和水平很有限,如果文中出现错误&am…...

Kubernetes (十三) 存储——持久卷-动静态分配

一. 简介 二. NFS持久化存储步骤(静态分配) 1. 集群外…...

order by之后的injection(sqllabs第四十六关)

order by相关注入知识 这一关的sql语句是利用的order by 根据输入的id不同数据排序不一样可以确定就是order by order by后面无法使用ubion注入(靠找不到) 可以利用后面的参数进行攻击 1)数字 没作用考虑布尔类型 rand和select ***都可以 …...

C++ 树与图的广度优先遍历 || 模版题 :图中点的层次

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环。 所有边的长度都是 1 ,点的编号为 1∼n 。 请你求出 1 号点到 n 号点的最短距离,如果从 1 号点无法走到 n 号点,输出 −1 。 输入格式 第一行包含两个整数 n 和 m 。 …...

k8s---pod控制器

pod控制器发的概念: 工作负载,workload用于管理pod的中间层,确保pod资源符合预期的状态。 预期状态: 1、副本数 2、容器重启策略 3、镜像拉取策略 pod出故障的出去等等 pod控制器的类型: 1、replicaset&#xf…...

2024.1.11力扣每日一题——构造有效字符串的最少插入数

2024.1.11 题目来源我的题解方法一 暴力模拟方法二 动态规划方法三 直接拼接方法四 计算组数 题目来源 力扣每日一题;题序:2645 我的题解 方法一 暴力模拟 直接模拟,根据题意可知 若是abc则不用插入,若是ab,ac,bc这需要 插入一…...

软件测试|如何使用Selenium处理隐藏元素

简介 我们在使用selenium进行web自动化测试时,有时候会遇到元素被隐藏,从而无法对元素进行操作,导致我们的用例报错的情况。当我们遇到元素被隐藏的情况时,需要先对隐藏的元素进行处理,才能继续进行我们的操作&#x…...

第三次面试总结 - 吉云集团 - 全栈开发

🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 目录 总结(非详细) 面试内…...

buuctf-Misc 题目解答分解118-120

118.[INSHack2017]sanity 打开压缩包就是一个md 文件 typora 打开 发现flag INSA{Youre_sane_Good_for_you} 119.粽子的来历 解压压缩包 ,得到文件夹如下 用010 editor 打开 我是A.doc 这个有些可以 都改成FF 保存 然后再次打开 docx 文件就发现了屈原的诗 其他b…...

Hive数据定义(1)

hive数据定义是hive的基础知识,所包含的知识点有:数据仓库的创建、数据仓库的查询、数据仓库的修改、数据仓库的删除、表的创建、表的删除、内部表、外部表、分区表、桶表、表的修改、视图。本篇文章先介绍:数据仓库的创建、数据仓库的查询、…...

golang 反序列化出现json: cannot unmarshal string into Go value of type model.Phone

项目场景: 今天在项目公关的过程中,需要对interface{}类型进行转换为具体结构体 问题描述 很自然的用到了resultBytes, _ : json.Marshal(result),然后对resultBytes进行反序列化转换为对应的结构体err : json.Unmarshal(resultBytes, &…...

【闯关练习】—— 1400分(构造)

🌏博客主页:PH_modest的博客主页 🚩当前专栏:cf闯关练习 💌其他专栏: 🔴每日一题 🟡 C跬步积累 🟢 C语言跬步积累 🌈座右铭:广积粮,缓…...

Qt QProgressBar进度条控件

文章目录 1 属性和方法1.1 值1.2 方向1.3 外观1.4 信号和槽 2 实例2.1 布局2.2 代码实现 QProgressBar是进度条控件,进度条用来指示任务的完成情况 1 属性和方法 QProgressBar有很多属性,完整的可查看帮助文档。这里以QProgressBar为例,列出…...

【新】Unity Meta Quest MR 开发(一):Passthrough 透视配置

文章目录 📕教程说明📕配置透视的串流调试功能📕第一步:设置 OVRManager📕第二步:添加 OVRPassthroughLayer 脚本📕第三步:在场景中添加虚拟物体📕第四步:设置…...

快速排序【hoare版本】【挖坑法】【双指针法】(数据结构)

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均…...

class_5:在c++中一个类包含另一个类的对象叫做组合

#include <iostream> using namespace std;class Wheel{ public://成员数据string brand; //品牌int year; //年限//真正的成员函数void printWheelInfo(); //声明成员函数 };void Wheel::printWheelInfo() {cout<<"我的轮胎品牌是&#xff1a;"<…...

Linux - No space left on device

问题描述 No space left on device 原因分析 说明在服务器设备上的存储空间已经满了&#xff0c;不能再上传或者新建文件夹或者文件等。 解决方案 确认查看服务器系统的磁盘使用情况是否是真的已经没有剩余空间&#xff0c;复制下面命令在服务器上运行&#xff0c;然后发现如果…...

STC8H8K蓝牙智能巡线小车——2. 点亮左右转弯灯与危险报警灯

任务调用示例 RTX 51 TNY 可做多任务调度&#xff0c;API较为简单。 /* 接口API */// 创建任务 extern unsigned char os_create_task (unsigned char task_id); // 结束任务 extern unsigned char os_delete_task (unsigned char task_id);// 等待 extern unsig…...

【微信小程序独立开发 3】个人资料页面编写

这一节完成用户个人信息昵称的填写和获取 上节编写完成后的页面如下所示&#xff1a; 首先进行用户昵称编辑功能的编写&#xff0c;铲屎官昵称采用了navigator标签&#xff0c;当点击昵称时会自动跳转到昵称编辑页面。 首先输入昵称编辑界面的导航栏名称 {"usingCompone…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...